Space Physics and Aeronomy, Ionosphere Dynamics and Applications. Группа авторов

Space Physics and Aeronomy, Ionosphere Dynamics and Applications - Группа авторов


Скачать книгу
T. J., & Evans, D. S. (1987). Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data. Journal of Geophysical Research,, 92, A7, 7606–7618.

      30 Fuller‐Rowell, T. J., & Rees, D. (1980). A three‐dimensional, time dependent global model of the thermosphere. Journal of the Atmospheric Sciences, 37, 2545–2567.

      31 Fuller‐Rowell, T. J., Codrescu, M. V., & Wilkinson, P. (2000). Quantitative modeling of the ionospheric response to geomagnetic activity. Annals of Geophysics, 18(7), 766–781. doi:10.1007/s00585‐000‐0766‐7

      32 Fuller‐Rowell, T. J., Rees, D., Quegan, S., Moffett, R. J., & Bailey, G. J. (1988). Simulations of the seasonal and universal time variations of the high‐latitude thermosphere and ionosphere using a coupled, three‐dimensional model. Pure and Applied Geophysics, 127, 189–217. doi:10.1007/ BF00879811

      33 Galand, M., & Richmond, A. D. (2001). Ionospheric electrical conductances produced by auroral proton precipitation. Journal of Geophysical Research, 106, A1, 117–125.

      34 Gary, J. B., Heelis, R. A., Hanson, W. B., & Slavin, J. A. (1994). Field‐aligned Poynting flux observations in the high‐latitude ionosphere. Journal of Geophysical Research, 99(A6), 11,417–11,427. doi:10.1029/93JA03167

      35 Gjerloev, J. W. & Hoffman, R. A. (2000). Height‐integrated conductivity in auroral substorms, 2. Modeling. Journal of Geophysical Research, 105, 227– 235.

      36 Hajj, G. A., Wilson, B. D., Wang, C., Pi, X., & Rosen, I. G. (2004). Data assimilation of ground GPS total electron content into a physics‐based ionospheric model by use of the Kalman filter. Radio Sci.,39, RS1S05. doi:10.1029/2002RS002859

      37 Hardy, D. A., Gussenhoven, M. S., Raistrick, R., & McNeil, W. J. (1987). Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity. Journal of Geophysical Research, 92, 12275–12294.

      38 Huang, C. Y., & Burke, W. J. (2004). Transient sheets of field‐aligned current observed by DMSP during the main phase of a magnetic superstorm. Journal of Geophysical Research, 209, A06303. doi:10.1029/2003JA010067

      39 Huang, C. Y., et al. (2016). Ionosphere‐thermosphere (IT) response to solar wind forcing during magnetic storms. Journal of Space Weather and Space Climate, 6, A4. doi:10.1051/swsc/2015041

      40 Huang, C. Y., Huang, Y., Su, Y.‐J., Hairston, M. R., & Sotirelis, T. (2017a). DMSP observations of high latitude Poynting flux during magnetic storms. Journal of Atmospheric and Solar‐Terrestrial Physics, 164, 294–307. doi:10.1016/jastp.2017.09.005

      41 Huang, C. Y., Huang, Y., Su, Y.‐J., Huang, T., & Sutton, E. K. (2017b). High‐latitude neutral mass density maxima. Journal of Geophysical Research, 122, 10,694–10,711. doi.org/10.1002/2017JA024334

      42 Huang, C. Y., Su, Y.‐J., Sutton, E. K., Weimer, D. R., & Davidson, R. L. (2014). Energy coupling during the August 2011 magnetic storm. Journal of Geophysical Research, 119, 1219–1232. doi:10.1002/2013JA019297

      43 Kelley, M. C., Knudsen, D. J., & Vickrey, J. F. (1991). Poynting flux measurements on a satellite: A diagnostic tool for space research. Journal of Geophysical Research, 96(A1), 201–207. doi:10.1029/90JA01837

      44 Khazanov, G. V., Glocer, A., & Himwich, E. W. (2014). Magnetosphere‐ionosphere energy interchange in the electron diffuse aurora. Journal of Geophysical Research, 119, 171– 184. doi:10.1002/2013JA019325

      45 Knipp, D. J., Tobiska, W. K., & Emery, B. A. (2004). Direct and indirect thermospheric heating sources for solar cycles 21–23. Solar Physics, 224, 494–505. doi:10.1007/s11207‐005‐6393‐4

      46 Liu, R., Lühr, H., & Ma, S.‐Y. (2010). Storm‐time related mass density anomalies in the polar cap as observed by CHAMP. Annals of Geophysics, 28(1), 165–180.

      47 Lu, G., Lyons, L. R., Reiff, P. H., Denig, W. F., de la Beaujardiere, O., Kroehl, H. W., Newell, P. T., et al. (1995). Characteristics of ionospheric convection and field‐aligned current in the dayside cusp region. Journal of Geophysical Research, 100(A7), 11845–11862.

      48 Lu, G., Richmond, A. D., Emery, B. A., & Roble, R. G. (1995). Magnetosphere‐ionosphere thermosphere coupling: Effect of neutral wind on energy transfer and field‐aligned current. Journal of Geophysical Research, 100(A10), 19,643–19,659. doi:10.1029/95JA00766

      49 Lühr, H., Rother, M., Köhler, W., Ritter, P., & Grunwaldt, L. (2004). Thermospheric up‐welling in the cusp region: Evidence from CHAMP observations. Geophysical Research Letters, 31, L06805. doi:10.1029/2003GL019314

      50 Lummerzheim, D., Rees, M. H., Craven, D. J., & Frank, L. A. (1991). Ionospheric conductances derived from DE‐1 auroral images. Journal of Atmospheric and Terrestrial Physics, 53, 281–292.

      51 Lu, G., Richmond, A. D., Lühr, H., & Paxton, L. (2016). High‐latitude energy input and its impact on the thermosphere. Journal of Geophysical Research. doi:10.1002/2015JA022294

      52 Lyon, J. G., Fedder, J. A., & Mobarry, C. M. (2004). The Lyon‐Fedder‐Mobarry (LFM) global MHD magnetospheric simulation code. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 1333–1350. doi:10.1016/j.jastp.2004.03.020

      53 Maeda, K. (1977). Conductivity and drift in the ionosphere. Journal of Atmospheric and Terrestrial Physics, 39, 1041–1053.

      54 Matsuo, T., & Richmond, A. D. (2008). Effects of high‐latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate. Journal of Geophysical Research, 113, A07309. doi:10.1029/2007JA012993

      55 Matsuo, T., Knipp, D. J., Richmond, A. D., Kilcommons, L., & Anderson, B. J. (2015). Inverse procedure for high‐latitude ionospheric electrodynamics: Analysis of satellite‐borne magnetometer data. Journal of Geophysical Research, 120, 5241–5251. doi:10.1002/2014JA020565

      56 McGranaghan, R., Knipp, D. J., & Matsuo, T. (2016). High‐latitude ionospheric conductivity variability in three dimensions. Geophysical Research Letters, 43, 7867– 7877. doi:10.1002/2016GL070253

      57 McGranaghan, R., Knipp, D. J., Matsuo, T., & Cousins, E. (2016). Optimal interpolation analysis of high‐latitude ionospheric Hall and Pedersen conductivities: Application to assimilative ionospheric electrodynamics reconstruction. Journal of Geophysical Research, 121, 4898– 4923,doi:10.1002/2016JA022486

      58 Merkin, V. G., & Lyon, J. G. (2010). Effects of the low‐latitude ionospheric boundary condition on the global magnetosphere. Journal of Geophysical Research, 115, A10202. doi:10.1029/2010JA015461

      59 Newell, P. T., Burke, W. J., Sanchez, E. R., Meng, C.‐I., Greenspan, M. E., & Clauer, C. R. (1991). The low‐latitude boundary layer and the boundary plasma sheet at low altitude: Prenoon precipitation regions and convections reversal boundaries. Journal of Geophysical Research, 96(A12), 21,013–21,012. doi:10.1029/91JA01818

      60 Newell, P. T., Wing, S., & Meng, C.‐I. (2005). Spectral properties and source regions of dayside electron acceleration events. Journal of Geophysical Research, 110, A11205. doi:10.1029/2005JA011264

      61 Papitashvili, V., Clauer, C., Musko, S., Belov, B.,Troshichev, O., & Gudkov, M. (1996). Low‐magnitude, long‐period magnetic pulsations observed deep in the southern polar cap. Antarctic Journal of the United States, 31, 255–256.

      62 Pi, X., Wang, C., Hajj, G. A., Rosen, G., Wilson, B. D., & Mannucci, A. J. (2004). Assimilative modeling of low‐latitude ionosphere. IEEE Proceedings Order Plans, 543–550.

      63 Powell, K., Roe, P., Linde, T., Gombosi, T., & De Zeeuw, D. L. (1999). A solution‐adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154, 284–309.

      64 Raeder, J., Berchem, J., & Ashour‐Abdalla, M. (1998). The geospace environment grand challenge: Results from a global geospace circulation model. Journal of Geophysical Research, 103, 14787–14797.

      65 Rastätter L., et al. (2016). GEM‐CEDAR challenge: Poynting flux at DMSP and modeled Joule heat. Space Weather, 14, 113–135. doi:10.1002/2015SW001238

      66 Rees,


Скачать книгу