Space Physics and Aeronomy, Ionosphere Dynamics and Applications. Группа авторов
R. A., Weiss, W., Nielsen, E., & Thomson, N. R. (1978). STARE: A new radar auroral backscatter experiment in northern Scandinavia. Radio Science, 13, 1021–1039. doi:10.1029/RS013i006p01021
48 Grocott, A. (2017). Time‐dependence of dawn‐dusk asymmetries in the terrestrial ionospheric convection pattern. In S. E. Haaland, A. Runov, & C. Forsyth (Eds.), Dawn‐dusk asymmetries in planetary plasma environments, vol. 228. Hoboken, NJ: American Geophysical Union Monograph. doi:10.1002/9781119216346.ch9
49 Grocott, A., & Milan, S. E. (2014). The influence of IMF clock angle timescales on the morphology of ionospheric convection. Journal of Geophysical Research Space Physics, 119. doi: 10.1002/2014JA020136
50 Grocott, A., Badman, S. V., Cowley, S. W. H., Yeoman, T. K., & Cripps, P. J. (2004). The influence of IMF By on the nature of the nightside high‐latitude ionospheric flow during intervals of positive IMF Bz. Annals of Geophysics, 22, 1755–1764. doi:10.5194/angeo‐ 22‐1755‐2004
51 Grocott, A., Cowley, S. W. H., & Sigwarth, J. B. (2003). Ionospheric flow during extended intervals of northward but By‐dominated IMF. Annals of Geophysics, 21, 509–538. doi:10.5194/angeo‐21‐509‐2003
52 Grocott, A., Cowley, S. W. H., Sigwarth, J. B., Watermann, J. F., & Yeoman, T. K. (2002). Excitation of twin‐vortex flow in the nightside high‐latitude ionosphere during an isolated substorm. Annals of Geophysics, 20, 1577–1601.
53 Grocott, A., Laurens, H. J., & Wild, J. A. (2017). Nightside ionospheric convection asymmetries during the early substorm expansion phase: Relationship to onset local time. Geophysical Research Letters, 44. doi:10.1002/2017GL075763
54 Grocott, A., Milan, S. E., & Yeoman, T. K. (2008). Interplanetary magnetic field control of fast azimuthal flows in the nightside high‐latitude ionosphere. Geophysical Research Letters, 35, L08102. doi:10.1029/2008GL033545.
55 Grocott, A., Milan, S. E., Yeoman, T. K., Sato, N., Yukimatu, A. S., & Wild, J. A. (2010). Superposed epoch analysis of the ionospheric convection evolution during substorms, IMF BY dependence. Journal of Geophysical Research, 115, A00I06. doi: 10.1029/2010JA015728
56 Grocott, A., Wild, J. A., Milan, S. E., & Yeoman, T. K. (2009). Superposed epoch analysis of the ionospheric convection evolution during substorms: onset latitude dependence. Annals of Geophysics, 27, 591–600.
57 Grocott, A., Yeoman, T. K., Milan, S. E., & Cowley, S. W. H. (2005). Interhemispheric observations of the ionospheric signature of tail reconnection during IMF‐northward non‐ substorm intervals. Annals of Geophysics, 23, 1763–1770. doi:10.5194/angeo‐23‐1763‐2005
58 Grocott, A., Yeoman, T. K., Milan, S. E., Amm, O., Frey, H. U., Juusola, L., Nakamura, R., et al. (2007). Multi‐scale observations of magnetotail flux transport during IMF‐northward nonsubstorm intervals. Annals of Geophysics, 25, 1709–1720.
59 Hairston, M. R., Drake, K. A., & Skoug, R. (2005). Saturation of the ionospheric polar cap potential during the October–November 2003 superstorms. Journal of Geophysical Research, 110, A09S26. doi:10.1029/2004JA010864
60 Hairston, M. R., Hill, T. W., & Heelis, R. A. (2003). Observed saturation of the ionospheric polar cap potential during the 31 March 2001 storm. Geophysical Research Letters, 30, 1325. doi:10.1029/2002GL015894
61 Heelis, R. A. (1984). The effects of interplanetary magnetic field orientation on dayside high‐latitude ionospheric cusp. Journal of Geophysical Research, 89, 2873–2880.
62 Heppner, J. P. (1977). Empirical models of high‐latitude electric fields. Journal of Geophysical Research, 82, 1115.
63 Heppner, J. P., & Maynard, N. C. (1987). Empirical high‐latitude electric‐field models. Journal of Geophysical Research, 92, 4467–4489.
64 Holzer, T. E., McPherron, R. L., & Hardy, D. A. (1986). A quantitative empirical model of the magnetospheric flux transfer process. Journal of Geophysical Research, 91, 3287.
65 Hones, E. W., Jr., (1979). Transient phenomena in the magnetotail and their relationship to substorms. Space Science Reviews, 23, 393.
66 Huang, C.‐S., DeJong, A. D., & Cai, X. (2009). Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events. Journal of Geophysical Research, 114, A07202. doi:10.1029/2009JA014232
67 Huang, C.‐S., Sofko, G. J., Koustov, A. V., Andre, D. A., Ruohoniemi, J. M., Greenwald, R. A., & Hairston, M. R. (2000). Evolution of ionospheric multicell convection during northward interplanetary magnetic field with |Bz/By| > 1. Journal of Geophysical Research, 105, 27095–27107.
68 Hubert, B., Gérard, J.‐C., Milan, S. E., & Cowley, S. W. H. (2017). Magnetic reconnection during steady magnetospheric convection and magnetospheric modes. Annals of Geophysics, 35, 505–524. doi:10.5194/angeo‐35‐505‐2017
69 Hubert, B., Milan, S. E., Grocott, A., Cowley, S. W. H., & Gérard, J.‐C. (2006). Dayside and nightside reconnection rates inferred from IMAGE‐FUV and SuperDARN data. Journal of Geophysical Research, 111, A03217. doi:10.1029/2005JA011140
70 Iijima, T., & Potemra, T. A. (1976a). Amplitude distribution of field‐aligned currents at northern high latitudes observed by Triad. Journal of Geophysical Research, 81, 2165–2174. doi:10.1029/JA081i013p02165.
71 Iijima, T., & Potemra, T. A. (1976b). Field‐aligned currents in the dayside cusp observed by Triad. Journal of Geophysical Research, 81, 5971–5979. doi:10.1029/JA081i034p05971
72 Iijima, T., & Potemra, T. A. (1978). Large‐scale characteristics of field‐aligned currents associated with substorms. Journal of Geophysical Research, 83, 599–615.
73 Imber, S. M., Milan, S. E., & Hubert, B. (2006). Ionospheric flow and auroral signatures of dual lobe reconnection. Annals of Geophysics, 24, 3115–3129.
74 Kamide, Y., & Vickrey, J. F. (1983). Variability of the Harang discontinuity as observed by the Chatanika radar and the IMS Alaska magnetometer chain. Geophysical Research Letters, 10, 159.
75 Kamide, Y., Kokubun, S., Bargatze, L. F., & Frank, L. A. (1999). The size of the polar cap as an indicator of substorm energy. Physics and Chemistry of the Earth C, 24, 119.
76 Khan, H., & Cowley, S. W. H. (1999). Observations of the response time of high‐ latitude ionospheric convection to variations in the interplanetary magnetic field using EISCAT and IMP‐8 data. Annals of Geophysics, 17, 1306–1335.
77 Khurana, K. K., Walker, R. J., & Ogino, T. (1996). Magnetic convection in the presence of interplanetary magnetic field By: A conceptual model and simulations. Journal of Geophysical Research, 101, 4907–4916.
78 Kissinger, J., McPherron, R. L., Hsu, T.‐S., Angelopoulos, V., & Chu, X. (2012). Necessity of substorm expansions in the initiation of steady magnetospheric convection. Geophysical Research Letters, 39, L15105. doi:10.1029/2012GL052599
79 Koskinen, H. E. J., & Pulkkinen, T. (1995). Midnight velocity shear zone and the concept of Harang discontinuity. Journal of Geophysical Research, 100, 9539–9547.
80 Kunkel, T., Baumjohann, W., Untiedt, J., &. Greenwald, R. (1986). Electric fields and currents at the Harang discontinuity: A case study. Journal of Geophysical Research, 59, 73–86.
81 Laundal, K. M., Finlay, C. C., Olsen, N., & Reistad, J. P. (2018). Solar wind and seasonal influence on ionospheric currents from Swarm and CHAMP measurements. Journal of Geophysical Research Space: Physics, 123. doi:10.1029/2018JA025387
82 Laundal, K. M., Haaland, S. E., Lehtinen, N., Gjerloev, J. W., Østgaard, N., Tenfjord, P., Reistad, J. P., et al. (2015). Birkeland current effects on high‐latitude ground magnetic field perturbations. Geophysical Research Letters, 42, 7248–7254. doi: 10.1002/2015GL065776
83 Lockwood, M. (1991). On flow reversal boundaries and transpolar voltage in average models of high latitude convection. Planetary and Space Science, 3, 397–409.
84 Lockwood, M., & Cowley, S. W. H. (1992). Ionospheric convection and the substorm cycle. In Proceedings