Space Physics and Aeronomy, Ionosphere Dynamics and Applications. Группа авторов
Current and Electrodynamics Structure (ACES) observations of ionospheric feedback in the Alfvén resonator and model responses. Journal of Geophysical Research: Space Physics, 118, 3288–3296. doi: 10.1002/jgra.50348
12 Coroniti, F. V., & Pritchett, P. L. (2014). The quiet evening auroral arc and the structure of the growth phase near‐Earth plasma sheet. Journal of Geophysical Research: Space Physics, 119, 1827–1836. doi: 10.1002/2013JA019435
13 Cousins, E. D. P., & Shepherd, S. G. (2012). Statistical maps of small‐scale electric field variability in the high‐latitude ionosphere. Journal of Geophysical Research, 117, A12304. doi: 10.1029/2012JA017929
14 Cousins, E. D. P., Matsuo, T., & Richmond, A. D. (2015). Mapping high‐latitude ionospheric electrodynamics with SuperDARN and AMPERE. Journal of Geophysical Research: Space Physics, 120, 5854–5870. doi: 10.1002/2014JA020463
15 Crowley, G. (1996). A critical review of ionospheric patches and blobs. In Review of Radio Science 1993–1996. New York.: Oxford University Press.
16 De la Beaujardière, O., Lyons, L. R., Ruohoniemi, J. M., Friis‐Christensen, E., Danielsen, C., Rich, F. J., & Newell, P. T. (1994). Quiet‐time intensifications along the poleward auroral boundary near midnight. Journal of Geophysical Research, 99(A1), 287–298. doi: 10.1029/93JA01947
17 Deng, Y., Maute, A., Richmond, A. D., & Roble, R. G. (2009). Impact of electric field variability on Joule heating and thermospheric temperature and density, Geophysical Research Letters, 36, L08105. doi: 10.1029/2008GL036916
18 Donovan, E., et al. (2006). The azimuthal evolution of the substorm expansive phase onset aurora. In M. Syrjäsuo & E. Donovan (Eds.), Proceedings of ICS‐8, (pp. 55–60). Calgary, Alberta, Canada: University of Calgary.
19 Drury, E. E., Mende, S. B., Frey, H. U., & Doolittle, J. H. (2003). Southern Hemisphere poleward moving auroral forms. Journal of Geophysical Research, 108, 1114. doi: 10.1029/2001JA007536, A3
20 Ebihara, Y., Miyoshi, Y., Asamura, K., & Hirahara, M. (2008). Microburst cusp ion precipitation observed with Reimei. Journal of Geophysical Research, 113, A03201. doi: 10.1029/2007JA012735
21 Fear, R. C., Trenchi, L., Coxon, J. C., & Milan, S. E. (2017). How much flux does a flux transfer event transfer? Journal of Geophysical Research: Space Physics, 122, 12,310–12,327. doi:10.1002/2017JA024730
22 Feldstein, Y. I., Dremukhina, L. A., Levitin, A. E., Mall, U., Alexeev, I. I., & Kalegaev, V. V. (2003). Energetics of the magnetosphere during the magnetic storm. Journal of Atmospheric and Solar‐Terrestrial Physics, 65, 429–446.
23 Forsyth, C., Fazakerley, A. N., Rae, I. J., Watt, C. E. J., Murphy, K., Wild, J. A., Karlsson, T., et al. (2014). In situ spatiotemporal measurements of the detailed azimuthal substructure of the substorm current wedge. Journal of Geophysical Research: Space Physics, 119, 927–946. doi: 10.1002/2013JA019302
24 Foster, J. C., et al. (2005). Multiradar observations of the polar tongue of ionization. Journal of Geophysical Research, 110, A09S31. doi: 10.1029/2004JA010928
25 Frey, H. U., Immel, T. J., Lu, G., Bonnell, J., Fuselier, S. A., Mende, S. B., Hubert, B., et al. (2003). Properties of localized, high latitude, dayside aurora. Journal of Geophysical Research, 108, 8008. doi: 10.1029/2002JA009332, A4
26 Fujii, R., Hoffman, R. A., Anderson, P. C., Craven, J. D., Sugiura, M., Frank, L. A., & Maynard, N. C. (1994). Electrodynamic parameters in the nighttime sector during auroral substorms. Journal of Geophysical Research, 99(A4), 6093–6112. doi: 10.1029/93JA02210
27 Gabrielse, G., Nishimura, Y., Lyons, L., Gallardo‐Lacourt, B., Deng, Y., & Donovan, E. (2018). Statistical properties of mesoscale plasma flows in the nightside high‐latitude ionosphere. Journal of Geophysical Research, in press.
28 Gallardo‐Lacourt, B., Nishimura, Y., Lyons, L. R., Mishin, E. V., Ruohoniemi, J. M., Donovan, E. F., Angelopoulos, V., et al. (2017). Influence of auroral streamers on rapid evolution of ionospheric SAPS flows. Journal of Geophysical Research: Space Physics, 122, 12,406–12,420. doi:10.1002/2017JA024198
29 Gallardo‐Lacourt, B., Nishimura, Y., Lyons, L. R., Ruohoniemi, J. M., Donovan, E., Angelopoulos, V., McWilliams, K. A., et al. (2014b). Ionospheric flow structures associated with auroral beading at substorm auroral onset. Journal of Geophysical Research: Space Physics, 119, 9150–9159. doi: 10.1002/2014JA020298
30 Gallardo‐Lacourt, B., Nishimura,Y., Lyons, L. R., Zou, S., Angelopoulos, V., Donovan, E., McWilliams, K. A., et al. (2014a). Coordinated SuperDARN THEMIS ASI observations of mesoscale flow bursts associated with auroral streamers. Journal of Geophysical Research: Space Physics, 119, 142–150. doi: 10.1002/2013JA019245
31 Gjerloev, J. W., & Hoffman, R. A., Currents in auroral substorms. Journal of Geophysical Research, 107(A8). doi: 10.1029/2001JA000194, 2002
32 Golovchanskaya, I. V. (2008). Assessment of Joule heating for the observed distributions of high‐latitude electric fields. Geophysical Research Letters, 35, L16102. doi: 10.1029/2008GL034413
33 Golovchanskaya, I. V., & Kozelov, B. V. (2010). On the origin of electric turbulence in the polar cap ionosphere. Journal of Geophysical Research, 115, A09321. doi: 10.1029/2009JA014632
34 Gondarenko, N. A., & Guzdar, P. N. (2004). Plasma patch structuring by the nonlinear evolution of the gradient drift instability in the high‐latitude ionosphere. Journal of Geophysical Research, 109, A09301. doi: 10.1029/2004JA010504
35 Goodwin, L. V., Iserhienrhien, B., Miles, D. M., Patra, S., van derMeeren, C., Buchert, S. C., et al. (2015). Swarm in situ observations of F region polar cap patches created by cusp precipitation. Geophysical Research Letters, 42, 996–1003. doi: 10.1002/2014GL062610
36 Greenwald, R. A., Ruohoniemi, J. M., Bristow, W. A., Sofko, G. J., Villain, J.‐P., Huuskonen, A., Kokubun, S., et al. (1996). Mesoscale dayside convection vortices and their relation to substorm phase. Journal of Geophysical Research, 101(A10), 21697–21713. doi: 10.1029/96JA01639
37 Grubbs, G., II, Michell, R., Samara, M., Hampton, D., & Jahn, J.‐M. (2018). Predicting electron population characteristics in 2‐D using multispectral ground‐based imaging. Geophysical Research Letters, 45, 15–20. doi: 10.1002/2017GL075873
38 Hallinan, T. J., & Davis, T. N. (1970). Small‐scale auroral arc distortions. Planetary and Space Science, 18, 1735. doi:10.1016/0032‐0633(70)90007‐3
39 Hargreaves, J. K., Birch, M. J., & Evans, D. S. (2010). On the fine structure of medium energy electron fluxes in the auroral zone and related effects in the ionospheric D‐region. Annals of Geophysics, 28(5), 1107–1120. doi:10.5194/angeo‐28‐1107‐2010
40 Hatch, S. M., LaBelle, J., & Chaston, C. C. (2018). Storm phase‐partitioned rates and budgets of global Alfvénic energy deposition, electron precipitation, and ion outflow. Journal of Atmospheric and Solar‐Terrestrial Physics, 167, 1–12.
41 Henderson, M. G. (2013). Auroral substorms, poleward boundary activations, auroral streamers, omega bands, and onset precursor activity. In A. Keiling, E. Donovan, F. Bagenal & T. Karlsson (Eds.), Auroral phenomenology and magnetospheric processes: Earth and other planets. doi:10.1029/2011GM001165
42 Henderson, M. G., et al. (2006). Substorms during the 10–11 August 2000 sawtooth event. Journal of Geophysical Research, 111, A06206. doi: 10.1029/2005JA011366
43 Hosokawa, K., Milan, S. E., Lester, M., Kadokura, A., Sato, N., & Bjornsson, G. (2013). Large flow shears around auroral beads at substorm onset. Geophysical Research Letters, 40. doi:10.1002/grl.50958
44 Hosokawa, K., Moen, J. I., Shiokawa, K., & Otsuka, Y. (2011). Motion of polar cap arcs. Journal of Geophysical Research, 116, A01305. doi: 10.1029/2010JA015906
45 Hosokawa, K., Taguchi, S., & Ogawa, Y. (2016). Periodic creation of polar cap patches from auroral transients in the cusp. Journal of Geophysical Research: Space Physics, 121, 5639–5652. doi: 10.1002/2015JA022221
46 Huang, Y., Huang, C. Y., Su, Y.‐J., Deng, Y., & Fang, X. (2014). Ionization due to electron and proton precipitation during the August