Computational Methods in Organometallic Catalysis. Yu Lan

Computational Methods in Organometallic Catalysis - Yu Lan


Скачать книгу
long‐range‐dependent properties? Journal of Chemical Physics 131: 044108.

      59 59 Grimme, S. (2006). Semiempirical hybrid density functional with perturbative second‐order correlation. Journal of Chemical Physics 124: 034108.

      60  60 Schwabe, T. and Grimme, S. (2006). Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non‐local correlation effects. Physical Chemistry Chemical Physics 8: 4398.

      61 61 Manna, D., Kesharwani, M.K., Sylvetsky, N. et al. (2017). Conventional and explicitly correlated ab initio benchmark study on water clusters: revision of the BEGDB and WATER27 data sets. Journal of Chemical Theory and Computation 13: 3136–3152.

      62 62 Bühl, M., Reimann, C., Pantazis, D.A. et al. (2008). Geometries of third‐row transition‐metal complexes from density‐functional theory. Journal of Chemical Theory and Computation 4: 1449–1459.

      63 63 Kesharwani, M.K., Karton, A., Martin, J.M.L. et al. (2016). Benchmark ab initio conformational energies for the proteinogenic amino acids through explicitly correlated methods. Assessment of density functional methods. Journal of Chemical Theory and Computation 12: 444–454.

      64 64 Theresa, S., Sanhueza, I.A., Kalvet, I. et al. (2015). Computational studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an overview of commonly employed DFT methods and mechanistic insights. Chemical Reviews 115: 9532–9586.

      65 65 Grimme, S., Antony, J., Ehrlich, S. et al. (2010). A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu. Journal of Chemical Physics 132: 154104.

      66 66 Hehre, W.J., Stewart, R.F., Pople, J.A. et al. (1969). Self‐consistent molecular orbital methods. 1. Use of Gaussian expansions of Slater‐type atomic orbitals. Journal of Chemical Physics 51: 2657–2664.

      67 67 Collins, J.B., von Schleyer, P.R., Binkley, J.S. et al. (1976). Self‐consistent molecular orbital methods. 17. Geometries and binding energies of second‐row molecules. A comparison of three basis sets. Journal of Chemical Physics 64: 5142–5151.

      68 68 Ditchfield, R., Hehre, W.J., Pople, J.A. et al. (1971). Self‐consistent molecular orbital methods. 9. Extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. Journal of Chemical Physics 54: 724.

      69 69 Rassolov, V.A., Ratner, M.A., Pople, J.A. et al. (2001). 6‐31G* basis set for third‐row atoms. Journal of Computational Chemistry 22: 976–984.

      70 70 Binkley, J.S., Pople, J.A., Hehre, W.J. et al. (1980). Self‐consistent molecular orbital methods. 21. Small split‐valence basis sets for first‐row elements. Journal of the American Chemical Society 102: 939–947.

      71 71 Wachters, A.J.H. (1970). Gaussian basis set for molecular wavefunctions containing third‐row atoms. Journal of Chemical Physics 52: 1033.

      72 72 McLean, A.D. and Chandler, G.S. (1980). Contracted Gaussian‐basis sets for molecular calculations. 1. 2nd row atoms, Z = 11–18. Journal of Chemical Physics 72: 5639–5648.

      73 73 Dunning, T.H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Journal of Chemical Physics 90: 1007–1023.

      74  74 Kendall, R.A., Dunning, T.H., Harrison, R.J. et al. (1992). Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. Journal of Chemical Physics 96: 6796–6806.

      75 75 Woon, D.E. and Dunning, T.H. (1993). Gaussian‐basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. Journal of Chemical Physics 98: 1358–1371.

      76 76 Davidson, E.R. (1996). Comment on ‘comment on Dunning’s correlation‐consistent basis sets. Chemical Physics Letters 260: 514–518.

      77 77 Fuentealba, P., Preuss, H., Stoll, H. et al. (1982). A proper account of core‐polarization with pseudopotentials – single valence‐electron alkali compounds. Chemical Physics Letters 89: 418–422.

      78 78 Wadt, W.R. and Hay, P.J. (1985). Ab initio effective core potentials for molecular calculations – potentials for main group elements Na to Bi. Journal of Chemical Physics 82: 284–298.

      79 79 Weigend, F. and Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Physical Chemistry Chemical Physics 7: 3297–3305.

      80 80 Hay, P.J. and Wadt, W.R. (1985). Ab initio effective core potentials for molecular calculations – potentials for the transition‐metal atoms Sc to Hg. Journal of Chemical Physics 82: 270–283.

      81 81 Schwerdtfeger, P., Dolg, M., Schwarz, W.H.E. et al. (1989). Relativistic effects in gold chemistry. 1. Diatomic gold compounds. Journal of Chemical Physics 91: 1762–1774.

      82 82 Stevens, W.J., Basch, H., and Krauss, M. (1984). Compact effective potentials and efficient shared‐exponent basis‐sets for the 1st‐row and 2nd‐row atoms. Journal of Chemical Physics 81: 6026–6033.

      83 83 Roy, L.E., Hay, P.J., Martin, R.L. et al. (2008). Revised basis sets for the LANL effective core potentials. Journal of Chemical Theory and Computation 4: 1029–1031.

      84 84 Schäfer, A., Horn, H., Ahlrichs, R. et al. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. Journal of Chemical Physics 97: 2571.

      85 85 Schäfer, A., Horn, H., Ahlrichs, R. et al. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence. Journal of Chemical Physics 100: 5829.

      86 86 Hättig, C. (2005). Optimization of auxiliary basis sets for RI‐MP2 and RI‐CC2 calculations: core–valence and quintuple‐ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr. Physical Chemistry Chemical Physics 7: 59–66.

      87 87 Hellweg, A., Hättig, C., Höfener, S. et al. (2007). Optimized accurate auxiliary basis sets for RI‐MP2 and RI‐CC2 calculations for the atoms Rb to Rn. Theoretical Chemistry Accounts 117: 587–597.

      88 88 Tomasi, J., Mennucci, B., Cammi, R. et al. (2005). Quantum mechanical continuum solvation models. Chemical Reviews 105: 2999–3093.

      89 89 Tomasi, J., Mennucci, B., Cancès, E. et al. (1999). The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. Journal of Molecular Structure THEOCHEM 464: 211–226.

      90 90 Cossi, M., Rega, N., Scalmani, G. et al. (2003). Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. Journal of Computational Chemistry 24: 669–681.

      91 91 Barone, V. and Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A 102: 1995–2001.

      92 92 Foresman, J.B., Keith, T.A., Wiberg, K.B. et al. (1996). Solvent effects 5. The influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. Journal of Physical Chemistry 100: 16098–16104.

      93 93 Marenich, A.V., Cramer, C.J., Truhlar, D.G. et al. (2009). Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Journal of Physical Chemistry B 113: 6378–6396.

      94 94 Chai, J.D. and Head‐Gordon, M. (2008). Long‐range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics 10: 6615–6620.

      95 95 Chai, J.D. and Head‐Gordon, M. (2008). Systematic optimization of long‐range corrected hybrid density functionals. Journal of Chemical Physics 128: 084106.

      96 96 Frisch, M.J., Trucks, G.W., Schlegel, H.B. et al. (2010). Gaussian 09. Wallingford, CT: Gaussian.

      97 97 Velde, G., Bickelhaupt, F.M., Baerends, E.J. et al. (2001). Chemistry with ADF. Journal of Computational Chemistry 22: 931.

      98 98 Neese, F. (2012). The ORCA program system. Wiley Interdisciplinary


Скачать книгу