Biosurfactants for a Sustainable Future. Группа авторов

Biosurfactants for a Sustainable Future - Группа авторов


Скачать книгу
Phytomanagement of polycyclic aromatic hydrocarbons and heavy metals‐contaminated sites in Assam, North Eastern State of India, for boosting bioeconomy. In: Bioremediation and Bioeconomy (ed. M.N.V. Prasad), 609–626. Elsevier https://doi.org/10.1016/B978‐0‐12‐802830‐8.00024‐1.

      10 10 Tak, H.I., Ahmad, F., and Babalola, O.O. (2013). Advances in the application of plant growth‐promoting rhizobacteria in phytoremediation of heavy metals. In: Reviews of Environmental Contamination and Toxicology, vol. 223, 33–52. New York, NY: Springer.

      11 11 Sarma, H., Islam, N.F., and Prasad, M.N.V. (2017). Plant‐microbial association in petroleum and gas exploration sites in the state of Assam, north‐east India – Significance for bioremediation. Environmental Science and Pollution Research 24 (9): 8744–8758.

      12 12 Mani, D. and Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. International Journal of Environmental Science and Technology 11 (3): 843–872.

      13 13 Singh, P. and Cameotra, S.S. (2004). Enhancement of metal bioremediation by use of microbial surfactants. Biochemical and Biophysical Research Communications 319 (2): 291–297.

      14 14 Sekhar, K.C., Kamala, C.T., Chary, N.S. et al. (2004). Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass. Journal of Hazardous Materials 108 (1‐2): 111–117.

      15 15 Sarma, H. and Prasad, M.N.V. (2018). Metabolic engineering of rhizobacteria associated with plants for remediation of toxic metals and metalloids. In: Transgenic Plant Technology (ed. M.N.V. Prasad). Elsevier. eBook ISBN: 9780128143902, Paperback ISBN: 9780128143896.

      16 16 Dahrazma, B. and Mulligan, C.N. (2007). Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere 69 (5): 705–711.

      17 17 Mulligan, C.N., Yong, R.N., and Gibbs, B.F. (2001). Heavy metal removal from sediments by biosurfactants. Journal of Hazardous Materials 85 (1–2): 111–125.

      18 18 Juwarkar, A.A., Nair, A., Dubey, K.V. et al. (2007). Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68 (10): 1996–2002.

      19 19 Herman, D.C., Artiola, J.F., and Miller, R.M. (1995). Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environmental Science and Technology 29 (9): 2280–2285.

      20 20 Tan, H., Champion, J.T., Artiola, J.F. et al. (1994). Complexation of cadmium by a rhamnolipid biosurfactant. Environmental Science and Technology 28 (13): 2402–2406.

      21 21 Saikia, R.R., Deka, S., Deka, M., and Sarma, H. (2012). Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. Journal of Basic Microbiology 52 (4): 446–457.

      22 22 Mukherjee, S., Das, P., and Sen, R. (2006). Towards commercial production of microbial surfactants. Trends in Biotechnology 24 (11): 509–515.

      23 23 Cameotra, S.S., Makkar, R.S., Kaur, J., and Mehta, S.K. (2010). Synthesis of biosurfactants and their advantages to microorganisms and mankind. In: Biosurfactants. Advances in Experimental Medicine and Biology, vol. 672 (ed. R. Sen), 261–280. New York, NY: Springer.

      24 24 Shekhar, S., Sundaramanickam, A., and Balasubramanian, T. (2015). Biosurfactant producing microbes and their potential applications: A review. Critical Reviews in Environmental Science and Technology 45 (14): 1522–1554.

      25 25 Rodrigues, L.R. (2015). Microbial surfactants: fundamentals and applicability in the formulation of nano‐sized drug delivery vectors. Journal of Colloid and Interface Science 449: 304–316.

      26 26 Desai, J.D. and Banat, I.M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Review 61 (1): 47–64.

      27 27 Lin, S.C. (1996). Biosurfactants: Recent advances. Journal of Chemical Technology and Biotechnology: International Research in Process, Environmental and Clean Technology 66 (2): 109–120.

      28 28 Parkinson, M. (1985). Bio‐surfactants. Biotechnology Advances 3 (1): 65–83.

      29 29 Tabatabaei, M. (2015) Design and fabrication of integrated plasmonic platforms for ultra‐sensitive molecular and biomolecular detections. Doctorate Thesis.

      30 30 Leuchtle, B., Xie, W., Zambanini, T. et al. (2015). Critical factors for microbial contamination of domestic heating oil. Energy & Fuels 29 (10): 6394–6403.

      31 31 Miller, R.M. (1995). Biosurfactant‐facilitated remediation of metal‐contaminated soils. Environmental Health Perspectives 103: 59–62.

      32 32 Rufino, R.D., Luna, J.M., Campos‐Takaki, G.M. et al. (2012). Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals. Chemical Engineering 27: 61–66.

      33 33 Willumsen, P.A. and Karlson, U. (1996). Screening of bacteria, isolated from PAH‐contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7 (5): 415–423.

      34 34 Tabatabaei, A., Nouhi, A.A., Sajadian, V., and Mazaheri, A.M. (2005). Isolation of biosurfactant producing bacteria from oil reservoirs. Iranian Journal of Environmental Health Science and Engineering 2 (1): 6–12.

      35 35 Burger, M.M., Glaser, L., and Burton, R.M. (1963). The enzymatic synthesis of a rhamnose‐containing glycolipid by extracts of Pseudomonas aeruginosa. Journal of Biological Chemistry 238 (8): 2595–2602.

      36 36 Cooper, D.G. and Paddock, D.A. (1984). Production of a biosurfactant from Torulopsis bombicola. Applied Environmental Microbiology 47 (1): 73–176.

      37 37 Ristau, E. and Wagner, F. (1983). Formation of novel anionic trehalosetetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnology Letters 5 (2): 95–100.

      38 38 Cooper, D.G., Macdonald, C.R., Duff, S.J.B., and Kosaric, N. (1981). Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Applied Environmental Microbiology 42 (3): 408–412.

      39 39 Kretschmer, A., Bock, H., and Wagner, F. (1982). Chemical and physical characterization of interfacial‐active lipids from Rhodococcus erythropolis grown on n‐alkanes. Applied Environmental. Microbiology 44 (4): 864–870.

      40 40 Casas, J.A., de Lara, S.G., and Garcia‐Ochoa, F. (1997). Optimization of a synthetic medium for Candida bombicola growth using factorial design of experiments. Enzyme and Microbial Technology 21 (3): 21–229.

      41 41 Thanomsub, B., Watcharachaipong, T., Chotelersak, K. et al. (2004). Monoacylglycerols: glycolipid biosurfactants produced by a thermotolerant yeast, Candida ishiwadae. Journal of Applied Microbiology 96 (3): 588–592.

      42 42 Sarubbo, L.A., Farias, C.B., and Campos‐Takaki, G.M. (2007). Co‐utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Current Microbiology 54 (1): 68–73.

      43 43 Konishi, M., Fukuoka, T., Morita, T. et al. (2008). Production of new types of sophorolipids by Candida batistae. Journal of Oleo Science 57 (6): 359–369.

      44 44 Alejandro, C.S., Humberto, H.S., and Maria, J.F. (2011). Production of glycolipids with antimicrobial activity by Ustilago maydis FBD12 in submerged culture. African Journal of Microbiol Research 5: 2512–2523.

      45 45 Chandran, P. and Das, N. (2010). Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. International Journal of Engineering Science and Technology 2 (12): 6942–6953.

      46 46 Rosenberg, E. and Ron, E.Z. (1999). High‐and low‐molecular‐mass microbial surfactants. Applied Microbiology and Biotechnology 52 (2): 154–162.

      47 47 Saenz‐Marta, C.I., de Lourdes Ballinas‐Casarrubias, M., Rivera‐Chavira, B.E., and Nevarez‐o, G.V. (2015). Biosurfactants as useful tools in bioremediation. In: Advances in Bioremediation of Wastewater and Polluted Soil, 2e, 94–109. Rijeka, Crotia (InTechOpen)


Скачать книгу