Vestibular Disorders. Группа авторов
coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation. Ann Otol Rhinol Laryngol 2008;117:341–346.
5Cho NH, Jang JH, Jung W, Kim J: In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope. Opt Express 2014;22:8985–8995.
6Zou J, Lahelma J, Koivisto J, Dhanasingh A, Jolly C, Aarnisalo A, et al: Imaging cochlear implantation with round window insertion in human temporal bones and cochlear morphological variation using high-resolution cone beam CT. Acta Otolaryngol 2015;135:466–472.
7Zou J, Isomäki A, Hirvonen T, Aarnisalo A, Jero J, Pyykkö I: Label-free visualization of cholesteatoma in the mastoid and tympanic membrane using CARS microscopy. J Otol 2016;11:127–133.
8Zou J, Pyykko I, Hyttinen J: Inner ear barriers to nanomedicine-augmented drug delivery and imaging. J Otol 2016;11:165–177.
9Giesemann A, Hofmann E: Some remarks on imaging of the inner ear: options and limitations. Clin Neuroradiol 2015;25(suppl 2):197–203.
10Shibata T, Nagano T: Applying very high resolution microfocus X-ray CT and 3-D reconstruction to the human auditory apparatus. Nat Med 1996;2:933–935.
11Vogel U: New approach for 3D imaging and geometry modeling of the human inner ear. ORL J Otorhinolaryngol Relat Spec 1999;61:259–267.
12Maillot O, Attye A, Boyer E, Heck O, Kastler A, Grand S, et al: Post traumatic deafness: a pictorial review of CT and MRI findings. Insights Imaging 2016;7:341–350.
13Lane JI, Lindell EP, Witte RJ, DeLone DR, Driscoll CL: Middle and inner ear: improved depiction with multiplanar reconstruction of volumetric CT data. Radiographics 2006;26:115–124.
14Fatterpekar GM, Doshi AH, Dugar M, Delman BN, Naidich TP, Som PM: Role of 3D CT in the evaluation of the temporal bone. Radiographics 2006;26(suppl 1):S117-S132.
15Gnagi SH, Baker TR, Pollei TR, Barrs DM: Analysis of intraoperative radiographic electrode placement during cochlear implantation. Otol Neurotol 2015;36:1045–1047.
16Carlson ML, Leng S, Diehn FE, Witte RJ, Krecke KN, Grimes J, et al: Cochlear implant electrode localization using an ultra-high resolution scan mode on conventional 64-slice and new generation 192-slice multi-detector computed tomography. Otol Neurotol 2017;38:978–984.
17Tavassolie TS, Penninger RT, Zuniga MG, Minor LB, Carey JP: Multislice computed tomography in the diagnosis of superior canal dehiscence: how much error, and how to minimize it? Otol Neurotol 2012;33:215–222.
18Bremke M, Luers JC, Anagiotos A, Gostian AO, Dorn F, Kabbasch C, et al: Comparison of digital volume tomography and high-resolution computed tomography in detecting superior semicircular canal dehiscence – a temporal bone study. Acta Otolaryngol 2015;135:901–906.
19Brantberg K, Greitz D, Pansell T: Subarcuate venous malformation causing audio-vestibular symptoms similar to those in superior canal dehiscence syndrome. Otol Neurotol 2004;25:993–997.
20National Cancer Institute: Radiation Risks and Pediatric Computed Tomography (CT): A Guide for Health Care Providers. 2012. https://wwwcancergov/about-cancer/causes-prevention/risk/radiation/pediatric-ct-scans.
21Brenner D, Elliston C, Hall E, Berdon W: Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;176:289–296.
22Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al: Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012;380:499–505.
23Little MP, Hoel DG, Molitor J, Boice JD, Wakeford R, Muirhead CR: New models for evaluation of radiation-induced lifetime cancer risk and its uncertainty employed in the UNSCEAR 2006 report. Radiat Res 2008;169:660–676.
24Brenner D, Elliston C, Hall E, Berdon W: Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;176:289–296.
25Nauer CB, Zubler C, Weisstanner C, Stieger C, Senn P, Arnold A: Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality. Neuroradiology 2012;54:247–254.
26Weisstanner C, Mantokoudis G, Huth M, Verma RK, Nauer C, Senn P, et al: Radiation dose reduction in postoperative computed position control of cochlear implant electrodes in lambs – an experimental study. Int J Pediatr Otorhinolaryngol 2015;79:2348–2354.
27Erovic BM, Chan HH, Daly MJ, Pothier DD, Yu E, Coulson C, et al: Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment. Otolaryngol Head Neck Surg 2014;150:107–114.
28Zou J, Hannula M, Lehto K, Feng H, Lahelma J, Aula AS, et al: X-ray microtomographic confirmation of the reliability of CBCT in identifying the scalar location of cochlear implant electrode after round window insertion. Hear Res 2015;326:59–65.
29Kakinuma R, Moriyama N, Muramatsu Y, Gomi S, Suzuki M, Nagasawa H, et al: Ultra-high-resolution computed tomography of the lung: image quality of a prototype scanner. PLoS One 2015;10:e0137165.
30Peltonen LI, Aarnisalo AA, Kortesniemi MK, Suomalainen A, Jero J, Robinson S: Limited cone-beam computed tomography imaging of the middle ear: a comparison with multislice helical computed tomography. Acta Radiol 2007;48:207–212.
31Kurt H, Orhan K, Aksoy S, Kursun S, Akbulut N, Bilecenoglu B: Evaluation of the superior semicircular canal morphology using cone beam computed tomography: a possible correlation for temporomandibular joint symptoms. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;117:e280–e288.