Island Life; Or, The Phenomena and Causes of Insular Faunas and Floras. Alfred Russel Wallace
have the same species of fish in the rivers on their two sides. Where exceptions occur, it is often due to the great antiquity of the group, which has survived so many changes in physical geography that it has been able, step by step, to reach countries which are separated by barriers impassable to more recent types. Yet another and more efficient explanation of the distribution of this group of animals is the fact that many families and genera inhabit both fresh and salt water; and there is reason to believe that many of the fishes now inhabiting the tropical rivers of both hemispheres have arisen from allied marine forms becoming gradually modified for a life in fresh water. By some of these various causes, or a combination of them, most of the facts in the distribution of fishes can be explained without much difficulty.
The Dispersal of Insects.—In the enormous group of insects the means of dispersal among land animals reach their maximum. Many of them have great powers of flight, and from their extreme lightness they can be carried immense distances by gales of wind. Others can survive exposure to salt water for many days, and may thus be floated long distances by marine currents. The eggs and larvæ often inhabit solid timber, or lurk under bark or in crevices of logs, and may thus reach any countries to which such logs are floated. Another important factor in the problem is the immense antiquity of insects, and the long persistence of many of the best marked types. The rich insect fauna of the Miocene period in Switzerland consisted largely of genera still inhabiting Europe, and even of a considerable number identical, or almost so, with living species. Out of 156 genera of Swiss fossil beetles no less than 114 are still living; and the general character of the species is exactly like that of the existing fauna of the northern hemisphere in a somewhat more southern latitude. There is, therefore, evidently no difficulty in accounting for any amount of dispersal among insects; and it is all the more surprising that with such powers of migration they should yet be often as restricted in their range as the reptiles or even the mammalia. The cause of this wonderful restriction to limited areas is, undoubtedly, the extreme specialisation of most insects. They have become so exactly adapted to one set of conditions, that when carried into a new country they cannot live. Many can only feed in the larva state on one species of plant; others are bound up with certain groups of animals on whom they are more or less parasitic. Climatal influences have a great effect on their delicate bodies; while, however well a species may be adapted to cope with its enemies in one locality, it may be quite unable to guard itself against those which elsewhere attack it. From this peculiar combination of characters it happens, that among insects are to be found examples of the widest and most erratic dispersal and also of the extremest restriction to limited areas; and it is only by bearing these considerations in mind that we can find a satisfactory explanation of the many anomalies we meet with in studying their distribution.
The Dispersal of Land Mollusca.—The only other group of animals we need now refer to is that of the air-breathing mollusca, commonly called land-shells. These are almost as ubiquitous as insects, though far less numerous; and their wide distribution is by no means so easy to explain. The genera have usually a very wide, and often a cosmopolitan range, while the species are rather restricted, and sometimes wonderfully so. Not only do single islands, however small, often possess peculiar species of land-shells, but sometimes single mountains or valleys, or even a particular mountain side, possess species or varieties found nowhere else upon the globe. It is pretty certain that they have no means of passing over the sea but such as are very rare and exceptional. Some which possess an operculum, or which close the mouth of the shell with a diaphragm of secreted mucus, may float across narrow arms of the sea, especially when protected in the crevices of logs of timber; while in the young state when attached to leaves or twigs they may be carried long distances by hurricanes.[15] Owing to their exceedingly slow motion, their powers of voluntary dispersal, even on land, are very limited, and this will explain the extreme restriction of their range in many cases.
Great Antiquity of Land-Shells.—The clue to the almost universal distribution of the several families and of many genera, is to be found, however, in their immense antiquity. In the Pliocene and Miocene formations most of the land-shells are either identical with living species or closely allied to them, while even in the Eocene almost all are of living genera, and one British Eocene fossil still lives in Texas. Strange to say, no true land-shells have been discovered in the Secondary formations, but they must certainly have abounded, for in the far more ancient Palæozoic coal measures of Nova Scotia two species belonging to the living genera Pupa and Zonites have been found in considerable abundance.
Land-shells have therefore survived all the revolutions the earth has undergone since Palæozoic times. They have been able to spread slowly but surely into every land that has ever been connected with a continent, while the rare chances of transfer across the ocean, to which we have referred as possible, have again and again occurred during the almost unimaginable ages of their existence. The remotest and most solitary of the islands of the mid-ocean have thus become stocked with them, though the variety of species and genera bears a direct relation to the facilities of transfer, and the shell fauna is never very rich and varied, except in countries which have at one time or other been united to some continental land.
Causes Favouring the Abundance of Land-Shells.—The abundance and variety of land-shells is also, more than that of any other class of animals, dependent on the nature of the surface and the absence of enemies, and where these conditions are favourable their forms are wonderfully luxuriant. The first condition is the presence of lime in the soil, and a broken surface of country with much rugged rock offering crevices for concealment and hibernation. The second is a limited bird and mammalian fauna, in which such species as are especially shell-eaters shall be rare or absent. Both these conditions are found in certain large islands, and pre-eminently in the Antilles, which possess more species of land-shells than any single continent. If we take the whole globe, more species of land-shells are found on the islands than on the continents—a state of things to which no approach is made in any other group of animals whatever, but which is perhaps explained by the considerations now suggested.
The Dispersal of Plants.—The ways in which plants are dispersed over the earth, and the special facilities they often possess for migration have been pointed out by eminent botanists, and a considerable space might be occupied in giving a summary of what has been written on the subject. In the present work, however, it is only in two or three chapters that I discuss the origin of insular floras in any detail; and it will therefore be advisable to adduce any special facts when they are required to support the argument in particular cases. A few general remarks only will therefore be made here.
Special Adaptability of Seeds for Dispersal.—Plants possess many great advantages over animals as regards the power of dispersal, since they are all propagated by seeds or spores, which are hardier than the eggs of even insects, and retain their vitality for a much longer time. Seeds may lie dormant for many years and then vegetate, while they endure extremes of heat, of cold, of drought, or of moisture which would almost always be fatal to animal germs. Among the causes of the dispersal of seeds De Candolle enumerates the wind, rivers, ocean currents, icebergs, birds and other animals, and human agency. Great numbers of seeds are specially adapted for transport by one or other of these agencies. Many are very light, and have winged appendages, pappus, or down, which enable them to be carried enormous distances. It is true, as De Candolle remarks, that we have no actual proofs of their being so carried; but this is not surprising when we consider how small and inconspicuous most seeds are. Supposing every year a million seeds were brought by the wind to the British Isles from the Continent, this would be only ten to a square mile, and the observation of a life-time might never detect one; yet a hundredth part of this number would serve in a few centuries to stock an island like Britain with a great variety of continental plants.
When, however, we consider the enormous quantity of seeds produced by plants, that great numbers of these are more or less adapted to be carried by the wind, and that winds of great violence and long duration occur in most parts of the world, we are as sure that seeds must be carried to great distances as if we had seen them so carried. Such storms carry leaves, hay, dust, and many small objects to a great height in the air, while many insects have been conveyed by them for hundreds of miles out to sea and far beyond what their unaided powers of flight could have effected.
Birds as Agents in the Dispersal of Plants.—Birds