Statistical Methods and Modeling of Seismogenesis. Eleftheria Papadimitriou
Fault. Ann. Geophys., 37, 1495–1513.
Gulia, L. and Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574(7777), 193–199 [Online]. Available at: doi: 10.1038/s41586-019- 1606-4 [Accessed 9 October 2019].
Gulia, L., Tormann, T., Wiemer, S., Hermann, M., Seif, S. (2016). Short-term probabilistic earthquake risk assessment considering time-dependent b-values. Geoph. Res. Lett, 43(3), 1100–1108.
Khodaverdian, A., Zafarani, H., Rahimian, M. (2016a). Using a physics-based earthquake simulator to evaluate seismic hazard in NW Iran. Geophys J. Int., 206(379–394), 2624–2639.
Khodaverdian, A., Zafarani, H., Schultz, K.W., Rahimian, M. (2016b). Recurrence time distributions of large earthquakes in Eastern Iran. Bull. Soc. Seismol. Am., 106(6), 2624–2639.
Mele, F.M., Marcocci, C., Bono, A., Marchetti, A. (2010). ISIDe, Italian Seismological Instrumental and parametric Data-base. INGV, CNT [Online]. Available at: http://iside.rm.ingv.it/iside/standard/index.jsp.
Montuori, C., Murru, M., Falcone, G. (2016). Spatial variation of the b-value observed for the periods preceding and following the 24 August 2016, amatrice earthquake (ml6.0) (Central Italy). Annals of Geophysics, 5, 2016.
Mosca, I., Console, R., D’Addezio, G. (2012). Renewal models of seismic recurrence applied to paleoseismological and historical observations. Tectonophysics, 564, 54–67.
Parsons, T. and Geist, E.L. (2009). Is there basis for preferring characteristic earthquakes over Gutenberg–Richter distributions on individual faults in probabilistic earthquake forecasting? Bull. Seismol. Soc. Am., 99, 0120080069.
Parsons, T., Console, R., Falcone, G., Murru, M., Yamashina, K. (2013). Comparison of characteristic and Gutenberg–Richter models for time-dependent M ≥ 7.9 earthquake probability in the Nankai–Tokai subduction zone. Japan. Geophys. J. Int, 190(3),1673–1688.
Parsons, T., Geist, E.L., Console, R., Carluccio, R. (2018). Characteristic earthquake magnitude frequency distributions on faults calculated from consensus data in california. J. Geoph. Res., 123(12), 761–10.
Pollitz, F.F. (2011). Epistemic uncertainty in California-wide synthetic seismicity simulations. Bull. Seismol. Soc. Am., 101, 2481–2498.
Pollitz, F.F. (2012). Viscosim earthquake simulator. Seismol. Res. Lett., 83, 979–982.
Pollitz, F.F. and Schwartz, D. (2008). Probabilistic seismic hazard in the San Francisco Bay area based on a simplified viscoelastic-cycle model of fault interactions. J. Geophys. Res., 113.
Reid, H.F. (1910). The mechanics of the California earthquake of April 18, 1906, report of the State Investigation Commission, vol. 2. Technical Report, Carnegie Institution of Washington, Washington, DC.
Richards-Dinger, K.B. and Dieterich, J.H. (2012). RSQSim earthquake simulator. Seismol. Res. Lett., 83(6), 983–990.
Rovida, A., Camassi, R., Gasperini, P., Stucchi, M. (2011). CPTI11, 2011 version, Parametric Catalogue of Italian Earthquakes. INGV, Milan, Bologna [Online]. Available at: http://emidius.mi.ingv.it/CPTI11.
Rundle, J.B. and Brown, S. (1991). Origin of rate dependence in frictional sliding. J. Stat. Phys., 65(1), 403–412.
Rundle, J.B. and Jackson, D.D. (1977). Numerical simulation of earthquake sequences. Bull. Seismol. Soc. Am., 87, 1363–1377.
Rundle, J.B., Rundle, P.B., Tiampo, K.F., Donnellan, A., Klein, W., de san Martins, J., Kellogg, L.H. (2002). Gem plate boundary simulations for the Plate Boundary Observatory: A program for understanding the physics of earthquakes on complex fault networks via observations, theory and numerical simulations. In Earthquake Processes: Physical Modelling, Numerical Simulation & Data Analysis, Matsu’ura, M., Mora, P., Donnellan, A., Yin, X.-c (eds). Springer, Basel.
Rundle, J.B., Rundle, P.B., Donnellan, A., Turcotte, D.L., Scherbakov, R., Li, P., Malamud, B.D., Grant, L.B., Fox, G.C., McLeod, D., Yakovlev, G., Parker, J., Klein, W., Klein, W., Tiampo, K.F. (2005). A simulation-based approach to forecasting the next great San Francisco earthquake. Proc. Natl. Acad. Sci., 102(43), 15363–15367.
Rundle, P., Rundle, J., Tiampo, K., Donnellan, A., Turcotte, D.L. (2006). Virtual California: Fault model, frictional parameters, applications. In Computational Earthquake Physics. Simulations, Analysis and Infrastructure, Part I. Pageoph Topical Volumes, Yin, P., Mora, X., Donnellan, A., Matsu’ura, M. (eds). Birkhäuser, Basel.
Sachs, M.K., Heien, E.M., Turcotte, D.L., Yikilmaz, M.B., Rundle, J.B., Kellogg, L.H. (2012). Virtual California earthquake simulator. Seism. Res. Lett., 83(6), 973–978.
Schultz, K.W. and Wilson, J. (2015). An introduction to virtual quake. CIG Webimar, University of California, Department of Physics – Rundle Group, December 3.
Schultz, K.W., Sachs, M., Yoder, M.R., Rundle, J.B., Turcotte, D.L., Helen, E.M., Donnellan, A. (2015). Virtual quake: Statistics. In Co-seismic Deformations and Gravity Changes for Driven Earthquake Fault Systems, International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH), Hashimoto, M. (ed.). International Association of Geodesy Symposia 145. Springer, Cham.
Schultz, K.W., Yoder, M.R., Wilson, J.M., Heien, E.M., Scahs, M.K., Rundle, J.B., Turcotte, D.L. (2017). Parametrizing physics-based earthquake simulations. Pure Appl. Geophys., 174, 2269–2278.
Shaw, B.E. (2019). Beyond backslip: Improvement of earthquake simulators from new hybrid loading conditions. Bull. Seismol. Soc. Am., 109, 6 [Online]. Available at: https://doi.org/10.1785/0120180128.
Shaw, B.E., Milner, K.V., Field, E.H., Richards-Dinger, K.B., Gilchrist, J.J., Dieterich, J.H., Jordan, T.H. (2018). A physics-based earthquake simulator replicates seismic hazard statistics across California. Sci. Adv., 4, 8.
Toda, S., Stein, R.S., Reasenberg, P.A., Dieterich, J.H., Yoshida, A. (1998). Stress transferred by the 1995 mw = 6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities. J. Geophys. Res., 103(B10), 24543–24565.
Toda, S., Stein, R.S., Richards-Dinger, K.B., Bozkurt, S. (2005). Forecasting the evolution of seismicity in Southern California: Animations built on earthquake stress transfer. J. Geophys. Res., 110, B05S16.
Tullis, T.E. (2012). Preface to the focused issue on earthquake simulators. Seism. Res. Lett., 83(6), 957–958.
Tullis, T.E., Richards-Dinger, K.B., Barall, M., Dieterich, J.H., Field, E.H., Heien, E.M., Kellogg, L.H., Pollitz, E.F., Rundle, J.B., Sachs, M.K., Turcotte, D.L., Ward, S.N., Yikilmaz, M.B. (2012a). Comparison among observations and earthquake simulator results for ALLCAL2 California fault model. Seismol Res. Lett., 83(6), 994–1006.
Tullis, T.E., Richards-Dinger, K.B., Barall, M., Dieterich, J.H., Field, E.H., Heien, E.M., Kellogg, L.H., Pollitz, E.F., Rundle, J.B., Sachs, M.K., Turcotte, D.L., Ward, S.N., Yikilmaz, M.B. (2012b). Generic earthquake simulator. Seismol Res. Lett., 83(6), 959–963.
Ward, S.N. (1992). An application of synthetic seismicity in earthquake statistics: The Middle America Trench. J. Geophys. Res., 97, 6675–6682.
Ward, S.N. (1996), A synthetic seismicity model for southern California: Cycles, probability and hazard, J. Geophys. Res., 101, 2293–22418.
Ward, S.N. (2000). San Francisco Bay area earthquake simulations: A step towards a standard physical earthquake model. Bull. Seismol. Soc. Am., 90(2), 370–386.
Ward, S.N. (2012). ALLCAL earthquake simulator. Seismol. Res. Lett., 83(6), 964–972.
WGCEP (2003). Earthquake probabilities in the San Francisco Bay region: 2002–2031. Technical