Spectrums of Amyotrophic Lateral Sclerosis. Группа авторов
appropriately acknowledged and/or referenced. Where relevant, appropriate permissions have been obtained from the original copyright holder.
REFERENCES
1 1. Rowland, L.P. and Shneider, N.A. (2001). Amyotrophic lateral sclerosis. N Engl J Med 344 (22): 1688–1700.
2 2. Neumann, M., Sampathu, D.M., Kwong, L.K. et al. (2006). Ubiquitinated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314 (5796): 130–133.
3 3. Byrne, S., Bede, P., Elamin, M. et al. (2011). Proposed criteria for familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12 (3): 157–159.
4 4. Saberi, S., Stauffer, J.E., Schulte, D.J., and Ravits, J. (2015). Neuropathology of amyotrophic lateral sclerosis and its variants. Neurol Clin 33 (4): 855–876.
5 5. Lattante, S., Conte, A., Zollino, M. et al. (2012). Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology 79 (1): 66–72.
6 6. Renton, A.E., Chiò, A., and Traynor, B.J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17 (1): 17–23.
7 7. Longinetti, E. and Fang, F. (2019). Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol 32 (5): 771–776.
8 8. Sabatelli, M., Madia, F., Conte, A. et al. (2008). Natural history of young‐adult amyotrophic lateral sclerosis. Neurology 71 (12): 876–881.
9 9. Sabatelli, M., Zollino, M., Luigetti, M. et al. (2011). Uncovering amyotrophic lateral sclerosis phenotypes: clinical features and long‐term follow‐up of upper motor neuron‐dominant ALS. Amyotroph Lateral Scler 12 (4): 278–282.
10 10. Swinnen, B. and Robberecht, W. (2014). The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol 10 (11): 661–670.
11 11. Cappellari, A., Ciammola, A., and Silani, V. (2008). The pseudopolyneuritic form of amyotrophic lateral sclerosis (Patrikios' disease). Electromyogr Clin Neurophysiol 48 (2): 75–81.
12 12. Hu, M.T., Ellis, C.M., Al‐Chalabi, A. et al. (1998). Flail arm syndrome: a distinctive variant of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 65 (6): 950–951.
13 13. Gamez, J., Cervera, C., and Codina, A. (1999). Flail arm syndrome of Vulpian‐Bernhart's form of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 67 (2): 258.
14 14. Ludolph, A., Drory, V., Hardiman, O. et al. (2015). A revision of the El Escorial criteria −2015. Amyotroph Lateral Scler Frontotemporal Degener 16 (5–6): 291–292.
15 15. Agosta, F., Al‐Chalabi, A., Filippi, M. et al. (2015). The El Escorial criteria: strengths and weaknesses. Amyotroph Lateral Scler Frontotemporal Degener 16 (1–2): 1–7.
16 16. Ratnavalli, E., Brayne, C., Dawson, K., and Hodges, J.R. (2002). The prevalence of frontotemporal dementia. Neurology 58 (11): 1615–1621.
17 17. Harvey, R.J., Skelton‐Robinson, M., and Rossor, M.N. (2003). The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry 74 (9): 1206–1209.
18 18. Mackenzie, I.R., Neumann, M., Bigio, E.H. et al. (2010). Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119 (1): 1–4.
19 19. Neumann, M., Roeber, S., Kretzschmar, H.A. et al. (2009). Abundant FUS‐immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol 118 (5): 605–616.
20 20. Mackenzie, I.R., Neumann, M., Baborie, A. et al. (2011). A harmonized classification system for FTLD‐TDP pathology. Acta Neuropathol 122 (1): 111–113.
21 21. Mackenzie, I.R., Rademakers, R., and Neumann, M. (2010). TDP‐43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9 (10): 995–1007.
22 22. Burrell, J.R., Kiernan, M.C., Vucic, S., and Hodges, J.R. (2011). Motor neuron dysfunction in frontotemporal dementia. Brain 134 (Pt 9): 2582–2594.
23 23. Lomen‐Hoerth, C., Anderson, T., and Miller, B. (2002). The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59 (7): 1077–1079.
24 24. DeJesus‐Hernandez, M., Mackenzie, I.R., Boeve, B.F. et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS. Neuron 72 (2): 245–256.
25 25. Renton, A.E., Majounie, E., Waite, A. et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21‐linked ALS‐FTD. Neuron 72 (2): 257–268.
26 26. Majounie, E., Renton, A.E., Mok, K. et al. (2012). Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross‐sectional study. Lancet Neurol 11 (4): 323–330.
27 27. van der Zee, J., Gijselinck, I., Dillen, L. et al. (2013). A pan‐European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat 34 (2): 363–373.
28 28. Nguyen, H.P., Van Broeckhoven, C., and van der Zee, J. (2018). ALS genes in the genomic era and their implications for FTD. Trends Genet 34 (6): 404–423.
29 29. Johnson, J.O., Mandrioli, J., Benatar, M. et al. (2010). Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68 (5): 857–864.
30 30. Fecto, F., Yan, J., Vemula, S.P. et al. (2011). SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 68 (11): 1440–1446.
31 31. Kim, H.J., Kim, N.C., Wang, Y.D. et al. (2013). Mutations in prion‐like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495 (7442): 467–473.
32 32. Johnson, J.O., Pioro, E.P., Boehringer, A. et al. (2014). Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci 17 (5): 664–666.
33 33. Arighi, A., Fumagalli, G.G., Jacini, F. et al. (2012). Early onset behavioral variant frontotemporal dementia due to the C9ORF72 hexanucleotide repeat expansion: psychiatric clinical presentations. J Alzheimers Dis 31 (2): 447–452.
34 34. Beck, J., Poulter, M., Hensman, D. et al. (2013). Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 92 (3): 345–353.
35 35. Merner, N.D., Girard, S.L., Catoire, H. et al. (2012). Exome sequencing identifies FUS mutations as a cause of essential tremor. Am J Hum Genet 91 (2): 313–319.
36 36. Thiel, C., Kessler, K., Giessl, A. et al. (2011). NEK1 mutations cause short‐rib polydactyly syndrome type majewski. Am J Hum Genet 88 (1): 106–114.
37 37. Herman, M., Ciancanelli, M., Ou, Y.H. et al. (2012). Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med 209 (9): 1567–1582.
38 38. Gonzalez, M.A., Feely, S.M., Speziani, F. et al. (2014). A novel mutation in VCP causes charcot‐marie‐tooth type 2 disease. Brain 137 (Pt 11): 2897–2902.
39 39. Haack, T.B., Ignatius, E., Calvo‐Garrido, J. et al. (2016). Absence of the autophagy adaptor SQSTM1/p62 causes childhood‐onset neurodegeneration with ataxia, dystonia, and gaze palsy. Am J Hum Genet 99 (3): 735–743.
40 40. Rezaie, T., Child, A., Hitchings, R. et al. (2002). Adult‐onset primary open‐angle glaucoma caused by mutations in optineurin. Science 295 (5557): 1077–1079.
41 41. Reid, E., Kloos, M., Ashley‐Koch, A. et al. (2002). A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am J Hum Genet 71 (5): 1189–1194.
42 42. Crimella, C., Baschirotto, C., Arnoldi, A. et al. (2012). Mutations in the motor and stalk domains of KIF5A in spastic paraplegia type 10 and in axonal charcot‐marie‐tooth type 2. Clin Genet 82 (2): 157–164.
43 43. Duis, J., Dean,