Spectrums of Amyotrophic Lateral Sclerosis. Группа авторов
in the recessive haplotype. Hum Mutat 20 (6): 473.
7 7. Zou, Z.Y., Zhou, Z.R., Che, C.H. et al. (2017). Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta‐analysis. J Neurol Neurosurg Psychiatry 88 (7): 540–549.
8 8. Chio, A., Mazzini, L., D'Alfonso, S. et al. (2018). The multistep hypothesis of ALS revisited: the role of genetic mutations. Neurology 91 (7): e635–e642.
9 9. Prudencio, M., Hart, P.J., Borchelt, D.R., and Andersen, P.M. (2009). Variation in aggregation propensities among ALS‐associated variants of SOD1: correlation to human disease. Hum Mol Genet 18 (17): 3217–3226.
10 10. Polymenidou, M. and Cleveland, D.W. (2011). The seeds of neurodegeneration: prion‐like spreading in ALS. Cell 147 (3): 498–508.
11 11. Prudencio, M. and Borchelt, D.R. (2011). Superoxide dismutase 1 encoding mutations linked to ALS adopts a spectrum of misfolded states. Mol Neurodegener 6: 77.
12 12. Hayashi, Y., Homma, K., and Ichijo, H. (2016). SOD1 in neurotoxicity and its controversial roles in SOD1 mutation‐negative ALS. Adv Biol Regul 60: 95–104.
13 13. Gill, C., Phelan, J.P., Hatzipetros, T. et al. (2019). SOD1‐positive aggregate accumulation in the CNS predicts slower disease progression and increased longevity in a mutant SOD1 mouse model of ALS. Sci Rep 9 (1): 6724.
14 14. Saccon, R.A., Bunton‐Stasyshyn, R.K., Fisher, E.M., and Fratta, P. (2013). Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain 136 (Pt 8): 2342–2358.
15 15. Sreedharan, J., Blair, I.P., Tripathi, V.B. et al. (2008). TDP‐43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319 (5870): 1668–1672.
16 16. Kabashi, E., Valdmanis, P.N., Dion, P. et al. (2008). TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40 (5): 572–574.
17 17. Harrison, A.F. and Shorter, J. (2017). RNA‐binding proteins with prion‐like domains in health and disease. Biochem J 474 (8): 1417–1438.
18 18. Van Deerlin, V.M., Leverenz, J.B., Bekris, L.M. et al. (2008). TARDBP mutations in amyotrophic lateral sclerosis with TDP‐43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7 (5): 409–416.
19 19. Borghero, G., Pugliatti, M., Marrosu, F. et al. (2014). Genetic architecture of ALS in Sardinia. Neurobiol Aging 35 (12): 2882 e7–e12.
20 20. Orru, S., Manolakos, E., Orru, N. et al. (2012). High frequency of the TARDBP p.Ala 382Thr mutation in Sardinian patients with amyotrophic lateral sclerosis. Clin Genet 81 (2): 172–178.
21 21. Tollervey, J.R., Curk, T., Rogelj, B. et al. (2011). Characterizing the RNA targets and position‐dependent splicing regulation by TDP‐43. Nat Neurosci 14 (4): 452–458.
22 22. Van Nostrand, E.L.V., Freese, P., Pratt, G.A., et al. (2020). A large‐scale binding and functional map of human RNA binding proteins. Nature 583: 711–719. 2018.
23 23. Deshaies, J.E., Shkreta, L., Moszczynski, A.J. et al. (2018). TDP‐43 regulates the alternative splicing of hnRNP A1 to yield an aggregation‐prone variant in amyotrophic lateral sclerosis. Brain 141 (5): 1320–1333.
24 24. Humphrey, J., Emmett, W., Fratta, P. et al. (2017). Quantitative analysis of cryptic splicing associated with TDP‐43 depletion. BMC Med Genet 10 (1): 38.
25 25. Ling, J.P., Pletnikova, O., Troncoso, J.C., and Wong, P.C. (2015). TDP‐43 repression of nonconserved cryptic exons is compromised in ALS‐FTD. Science 349 (6248): 650–655.
26 26. Fratta, P., Sivakumar, P., Humphrey, J. et al. (2018). Mice with endogenous TDP‐43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. EMBO J 37 (11): e98684.
27 27. Chou, C.C., Zhang, Y., Umoh, M.E. et al. (2018). TDP‐43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat Neurosci 21 (2): 228–239.
28 28. Mackenzie, I.R., Bigio, E.H., Ince, P.G. et al. (2007). Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61 (5): 427–434.
29 29. Berning, B.A. and Walker, A.K. (2019). The pathobiology of TDP‐43 C‐terminal fragments in ALS and FTLD. Front Neurosci 13: 335.
30 30. Sasaguri, H., Chew, J., Xu, Y.F. et al. (2016). The extreme N‐terminus of TDP‐43 mediates the cytoplasmic aggregation of TDP‐43 and associated toxicity in vivo;. Brain Res 1647: 57–64.
31 31. Mann, J.R., Gleixner, A.M., Mauna, J.C. et al. (2019). RNA binding antagonizes neurotoxic phase transitions of TDP‐43. Neuron 102 (2): 321–338. e8.
32 32. Voigt, A., Herholz, D., Fiesel, F.C. et al. (2010). TDP‐43‐mediated neuron loss in vivo; requires RNA‐binding activity. PLoS One 5 (8): e12247.
33 33. Kwiatkowski, T.J. Jr., Bosco, D.A., Leclerc, A.L. et al. (2009). Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323 (5918): 1205–1208.
34 34. Vance, C., Rogelj, B., Hortobagyi, T. et al. (2009). Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323 (5918): 1208–1211.
35 35. Shang, Y. and Huang, E.J. (2016). Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res 1647: 65–78.
36 36. Colombrita, C., Onesto, E., Megiorni, F. et al. (2012). TDP‐43 and FUS RNA‐binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post‐transcriptional fate in motoneuron‐like cells. J Biol Chem 287 (19): 15635–15647.
37 37. Ederle, H. and Dormann, D. (2017). TDP‐43 and FUS en route from the nucleus to the cytoplasm. FEBS Lett 591 (11): 1489–1507.
38 38. Schwartz, J.C., Ebmeier, C.C., Podell, E.R. et al. (2012). FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser 2. Genes Dev 26 (24): 2690–2695.
39 39. Shiihashi, G., Ito, D., Yagi, T. et al. (2016). Mislocated FUS is sufficient for gain‐of‐toxic‐function amyotrophic lateral sclerosis phenotypes in mice. Brain 139 (Pt 9): 2380–2394.
40 40. Renton, A.E., Majounie, E., Waite, A. et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21‐linked ALS‐FTD. Neuron 72 (2): 257–268.
41 41. DeJesus‐Hernandez, M., Mackenzie, I.R., Boeve, B.F. et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS. Neuron 72 (2): 245–256.
42 42. Morita, M., Al‐Chalabi, A., Andersen, P.M. et al. (2006). A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66 (6): 839–844.
43 43. Nordin, A., Akimoto, C., Wuolikainen, A. et al. (2015). Extensive size variability of the GGGGCC expansion in C9orf72 in both neuronal and non‐neuronal tissues in 18 patients with ALS or FTD. Hum Mol Genet 24 (11): 3133–3142.
44 44. Iacoangeli, A., Al Khleifat, A., Jones, A.R. et al. (2019). C9orf72 intermediate expansions of 24–30 repeats are associated with ALS. Acta Neuropathol Commun 7 (1): 115.
45 45. Ross, J.P., Leblond, C.S., Catoire, H. et al. (2019). Somatic expansion of the C9orf72 hexanucleotide repeat does not occur in ALS spinal cord tissues. Neurol Genet 5 (2): e317.
46 46. Babic Leko, M., Zupunski, V., Kirincich, J. et al. (2019). Molecular mechanisms of neurodegeneration related to C9orf72 hexanucleotide repeat expansion. Behav Neurol 2019: 2909168.
47 47. Ishiguro, A., Kimura, N., Watanabe, Y. et al. (2016). TDP‐43 binds and transports G‐quadruplex‐containing mRNAs into neurites for local translation. Genes Cells 21 (5): 466–481.
48 48. Prudencio, M., Belzil, V.V., Batra, R. et al. (2015). Distinct brain transcriptome profiles in C9orf72‐associated and sporadic ALS. Nat Neurosci 18 (8): 1175–1182.
49 49. Moens, T.G., Mizielinska, S., Niccoli, T. et al. (2018). Sense and antisense RNA are not