Genetic Disorders and the Fetus. Группа авторов
growth. Eur J Obstet Gynecol Reprod Biol 2000; 92:35.
21 21. Avagliano L, Bulfamante GP, Morabito A, et al. Abnormal spiral artery remodelling in the decidual segment during pregnancy: from histology to clinical correlation. J Clin Pathol 2011; 64:1064.
22 22. Sibley C. Understanding placental nutrient transfer – why bother? New biomarkers of fetal growth. J Physiol (Lond) 2009; 587:3431.
23 23. Syme MR, Paxton JW, Keelan JA. Drug transfer and metabolism by the human placenta. Clin Pharmacokinet 2004; 43:487.
24 24. Henderson GI, Perez T, Schenker S, et al. Maternal‐to‐fetal transfer of 5‐methyltetrahydrofolate by the perfused human placental cotyledon: evidence for a concentrative role by placental folate receptors in fetal folate delivery. J Lab Clin Med 1995; 126:184.
25 25. Solanky N, Jimenez AR, D'Souza S, et al Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta 2010; 31:134.
26 26. Constancia M, Angiolini E, Sandovici I, et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc Natl Acad Sci U S A 2005; 102:19219.
27 27. Coan P, Vaughan O, Sekita Y, et al. Adaptations in placental phenotype support fetal growth during undernutrition of pregnant mice. J Physiol (Lond) 2010; 588:527.
28 28. Bradley J, Leibold EA, Harris ZL, et al. Influence of gestational age and fetal iron status on IRP activity and iron transporter protein expression in third‐trimester human placenta. Am J Physiol Regul Integr Comp Physiol 2004; 287:R894.
29 29. Gangestad SW, Caldwell Hooper AE, Eaton MA. On the function of placental corticotropin‐releasing hormone: a role in maternal‐fetal conflicts over blood glucose concentrations. Biol Rev 2012; 87:856.
30 30. Mikheev AM, Nabekura T, Kaddoumi A, et al. Profiling gene expression in human placentae of different gestational ages: an OPRU Network and UW SCOR Study. Reprod Sci 2008; 15:866.
31 31. Winn VD, Haimov‐Kochman R, Paquet AC, et al. Gene expression profiling of the human maternal‐fetal interface reveals dramatic changes between midgestation and term. Endocrinology 2007; 148:1059.
32 32. Novakovic B, Yuen RK, Gordon L, et al. Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. BMC Genomics 2011; 12:529.
33 33. Robin C, Bollerot K, Mendes S, et al. Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 2009; 5:385.
34 34. Bárcena A, Muench MO, Kapidzic M, et al. Fisher SJ. A new role for the human placenta as a hematopoietic site throughout gestation. Reprod Sci 2009; 16:178.
35 35. Tang Z, Abrahams VM, Mor G, et al. Placental Hofbauer cells and complications of pregnancy. Ann N Y Acad Sci 2011; 1221:103.
36 36. Mouillet JF, Ouyang Y, Bayer A, et al. The role of trophoblastic microRNAs in placental viral infection. Int J Dev Biol 2014; 58:281.
37 37. Bastek JA, Gómez LM, Elovitz MA. The role of inflammation and infection in preterm birth. Clin Perinatol 2011; 38:385.
38 38. Galinsky R, Polglase GR, Hooper SB, et al. The consequences of chorioamnionitis: preterm birth and effects on development. J Pregnancy 2013; 2013:412831.
39 39. Konwar C, Del Gobbo GF, Terry J, et al. Association of a placental interleukin‐6 genetic variant (rs1800796) with DNA methylation, gene expression and risk of acute chorioamnionitis. BMC Med Genet 2019; 20:36.
40 40. Pereyra S, Bertoni B, Sapiro R. Interactions between environmental factors and maternal–fetal genetic variations: strategies to elucidate risks of preterm birth. Eur J Obstet Gynecol Reprod Biol 2016; 202:20.
41 41. Ragsdale HB, Kuzawa CW, Borja JB, et al. Regulation of inflammation during gestation and birth outcomes: Inflammatory cytokine balance predicts birth weight and length. Am J Hum Biol 2019; 31:e23245.
42 42. Alberry M, Soothill P. Management of fetal growth restriction. Arch Dis Child Fetal Neonatal Ed 2007; 92:F62.
43 43. Sheridan C. Intrauterine growth restriction: diagnosis and management. Aust Fam Physician 2005; 34:717.
44 44. Halliday HL. Neonatal management and long‐term sequelae. Best Pract Res Clin Obstet Gynecol 2009; 23:871.
45 45. Pallotto EK, Kilbride HW. Perinatal outcome and later implications of intrauterine growth restriction. Clin Obstet Gynecol 2006; 49:257.
46 46. Yanney M, Marlow N. Paediatric consequences of fetal growth restriction. Semin Fetal Neonatal Med 2004; 9:411.
47 47. Barker DJ, Thornburg KL. The obstetric origins of health for a lifetime. Clin Obstet Gynecol 2013; 56:511.
48 48. Benton SJ, McCowan LM, Heazell AE, et al. Placental growth factor as a marker of fetal growth restriction caused by placental dysfunction. Placenta 2016; 42:1.
49 49. Schoofs K, Grittner U, Engels T, et al. The importance of repeated measurements of the sFlt‐1/PlGF ratio for the prediction of preeclampsia and intrauterine growth restriction. J Perinat Med 2014; 42:61.
50 50. Crispi F, Domínguez C, Llurba E, et al. Placental angiogenic growth factors and uterine artery Doppler findings for characterization of different subsets in preeclampsia and in isolated intrauterine growth restriction. Obstet Gynecol 2006; 195:201.
51 51. Redline R. Placental pathology: a systematic approach with clinical correlations. Placenta 2008; 29:86.
52 52. Junaid T, Brownbill P, Chalmers N, et al. Fetoplacental vascular alterations associated with fetal growth restriction. Placenta 2014; 35:808.
53 53. Robinson WP, Peñaherrera MS, Jiang R, et al. Assessing the role of placental trisomy in preeclampsia and intrauterine growth restriction. Prenat Diagn 2010; 30:1.
54 54. Miura K, Yoshiura K, Miura S, et al. Clinical outcome of infants with confined placental mosaicism and intrauterine growth restriction of unknown cause. Am J Med Genet A 2006; 140:1827.
55 55. Lestou V, Desilets V, Lomax B, et al. Comparative genomic hybridization: a new approach to screening for intrauterine complete or mosaic aneuploidy. Am J Med Genet 2000; 92:281.
56 56. Wilkins‐Haug L, Quade B, Morton CC. Confined placental mosaicism as a risk factor among newborns with fetal growth restriction. Prenatal Diag 2006; 26:428.
57 57. Grati FR, Ferreira J, Benn P, et al. Outcomes in pregnancies with a confined placental mosaicism and implications for prenatal screening using cell‐free DNA. Genet Med 2020; 22(2):309.
58 58. Bianchi DW, Chiu RW. Sequencing of circulating cell‐free DNA during pregnancy. N Engl J Med 2018; 379:464.
59 59. Penaherrera M, Barrett I, Brown C, et al. An association between skewed X‐chromosome inactivation and abnormal outcome in mosaic trisomy 16 confined predominantly to the placenta. Clin Genet 2000; 58:436.
60 60. Redline RW, Hassold T, Zaragoza M. Determinants of villous trophoblastic hyperplasia in spontaneous abortions. Mod Pathol 1998; 11:762.
61 61. Astner A, Schwinger E, Caliebe A, et al. Sonographically detected fetal and placental abnormalities associated with trisomy 16 confined to the placenta. A case report and review of the literature. Prenat Diagn 1998; 18:1308.
62 62. Zaragoza MV, Millie E, Redline RW, et al. Studies of non‐disjunction in trisomies 2, 7, 15, and 22: does the parental origin of trisomy influence placental morphology? J Med Genet 1998; 35:924.
63 63. Eggermann T, Wollmann HA, Kuner R, et al. Molecular studies in 37 Silver‐Russell syndrome patients: frequency and etiology of uniparental disomy. Hum Genet 1997; 100:415.
64 64. Kotzot D, Schmitt S, Bernasconi F, et al. Uniparental disomy 7 in Silver–Russell syndrome and primordial growth retardation. Hum Mol Genet 1995; 4:583.
65 65. Henderson KG, Shaw TE, Barrett IJ, et al. Distribution of mosaicism in human placentae. Hum Genet 1996; 97:650.
66 66. Malvestiti F, Agrati