Liquid Biofuels. Группа авторов

Liquid Biofuels - Группа авторов


Скачать книгу
of Analytical and Applied Pyrolysis, 142, 104599, 2019.

      49. Konwer, D., Taylor, S.E., Gordon, B.E., Otvos, J.W., Calvin, M., Liquid Fuels from Mesua ferrea L. Seed Oil, Journal of American Oil Chemists’ Society, 66, 2, 223-226, 1989.

      50. Katikaneni, S.P.R., Adjaye, J.D., Bakhshi, N.N., Catalytic Conversion of Canola Oil to Fuels and Chemical Over Various Cracking Catalyst, Canadian Journal of Chemical Engineering, 73, 484-497, 1995.

      51. Ravichand, A., Anandha, M., Sivakumar, V., Calophyllum oil-a potential Bioresource for biodiesel production, International Journal of Advanced Life Science, 10, 1, 2017.

      52. Shen, Y., Zhang, N., Zhang, S., Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and pours carbons, Energy, 190, 116431, 2020.

      53. Wang, S., Yuan, C., Essakkimutlu, S., Xu, L., Cao, B., Abomohra, A.E., Qian, L., Liu, L., Hu, Y., Catalytic pyrolysis of waste clay oil to produce high quality biofuel, Journal of Analytical and Applied Pyrolysis, 141, 104633, 2019.

      54. Suriapparoa, D.V., Vinu, R., Shukla, A., Haldar, S., Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residue and waste plastics combined with catalytic upgradation, Bioresource Technology, 302, 122775, 2020.

      56. Sanahuja-Parejo, O., Veses, A., Navarro, M.V., Lopez, J.M., Murillo, R., Callen, M.S., Garcia, T., Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels, Energy Conversion and Management, 171, 1202-1212, 2018.

      57. Bharath, G., Rambabu, K., Hai, A., Banat, F., Taher, H., Schmidt, J.E., Show, P.L., Catalytic hydrodeoxygenation of biomass-derived pyrolysis oil over alloyed biometallic Ni3Fe nanocatalyst for high-grade biofuel production, Energy Conversion and Management, 213, 112859, 2020.

      58. Bridgwater, A.V., Bridge, S.A., A review of biomass pyrolysis and pyrolysis technologies, in: Biomass Pyrolysis Liquids Upgrading and Utilisation, Bridgwater, A.V., Grassi, G. (Ed.), pp. 11–92, Elsevier, 1991.

      59. Bridgwater, A.V., Bridge, S.A., Biomass pyrolysis liquids upgrading a utilisation, in: Biomass Pyrolysis Liquids Upgrading and Utilisation, Bridgwater, A.V. and Grassi, G. (Ed.), pp. 299-311, Elsevier, 1991.

      60. Bridgwater, A.V., Toft, A.J, Brammer, J.G., A Techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion, Renewable and Sustainable Energy Reviews, 6, 181-248, 2002.

      61. Onarheim, K., Hannula, I., Solantausta, Y., Hydrogen enhanced biofuels for transpott via fast pyrolysis of biomass: A conceptual assessment, Energy, 199, 117337, 2020.

      62. Casazza, A.A., Spennati, E., Converti, A., Burca, G., Production of carbon-based biofuels by pyrolysis of exhausted Arthrospira platensis biomass after protein or lipid recovery, Fuel Processing Tachnology, 201, 106336, 2020.

      63. Lappas, A.A., Samolada, M.C., Iatridis, D.K., Voutetakis, S.S., Vasalos, I.A., Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals, Fuel, 81, 2087-8095, 2002.

      64. Lee, K., Pyrolysis of municipal plastic wastes separated by difference of specific gravity, Journal of Analytical and Applied Pyrolysis, 79, 1-2, 362-367, 2007.

      65. Ismail, T.M., Banks, S.W., Yang, Y., Yang, H., Chen, Y., Bridgwater, A.V., Ramzy, K., El-Salam, M.A., Coal and biomass co-pyrolysis in a fluidized-bed reactor: Numerical assessment of fuel type and blending conditions, Fuel, 273, 118004, 2020.

      66. Qi, F., Wright, M.M., A DEM modeling of biomass fast pyrolysis in a double auger reactor, International Journal of Heat and Mass Transfer, 150, 119308, 2020.

      67. Makkawi, Y., Yu, X., Ocone, R., Parametric analysis of biomass fast pyrolysis in a downer fluidized bed reactor, Renewable Energy, 143, 1225-1234, 2019.

      68. Park, H.C., Choi, H.S., Fast pyrolysis of biomass in a spouted bed reactor: Hydrodynamics, heat transfer and chemical reaction, Renewable Energy, 143, 1268-1284, 2019.

      70. Basumatary, V., Saikia, R., Narzai, R., Bordoloi, N., Gogoi, L., Sur, D., Bhuyan, N., Kataki, R., Tea factory waste as a feedstock for thermo-chemical conversion to biofuel and biomaterial, materialstoday: PROCEEDİNGS, 5, 11, 2, 23413-23422, 2018.

      71. Duan, P., Jin, B., Xu, Y., Yang, Y., Bai, X., Wang, F., Zhang, L., Miao, J., Thermochemical conversion of chlorella pyrenoidosa to liquid biofuels, Bioresource Technology, 133, 197-205, 2013.

      72. Long, F., Zhai, Q., Liu, P., Cao, X., Jiang, X., Wang, F., Wei, L., Liu, C., Jiang, J., Xu, J., Catalytic conversion of triglycerides by metal-based catalysts and subsequent modification of molecular structure by ZSM-5 and Raney Ni for the production of high-value biofuel, Renewable Energy, 157, 1072-1080, 2020.

      73. Bui, N.Q., Fongarland, P., Rataboul, F., Dartiguelongue, C., Charon, N., Vallee, C., Essayem, N., Controlled pinewood fraction with supercritical ethanol: A prerequisite toward pinewood conversion into chemical and biofuels, Comptes Redus Chimie, 21, 6, 555-562, 2018.

      74. Lee, J.H., Hwang, H., Choi, J.W., Effect of transition metals on hydrothermal liquefaction of empty fruid bunches (EFB) for conversion to biofuel and valuable chemicals, Energy, 162, 1-9, 2018.

      75. Dutta, S., De, S., Alam, I., Abu-Omar, M.M., Saha, B., Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts, Journal of Catalysis, 288, 8-15, 2012.

      76. Zhang, Z., Cheng, J., Qui, Y., Zhang, X., Zhou, J., Cen, K., Competitive conversion pathway of methyl palmitate to produce jet biofuel over Ni/desilicated meso-Y zeolite catalyst, Fuel, 244, 472-478, 2019.

      77. Hess, D., Quinn, J.C., Impact of inorganic contaminants on microalgal biofuel production through multiple conversion pathway, Biomass and Bioenergy, 119, 273-245, 2018.

      78. Badwal, S.P.S., Giddey, S.S., Munnings, C., Bhatt, A.I., Hollenkamp, A.F., Emerging electrochemical energy conversion and storage technologies (open access), Frontiers in Chemistry, 2, 79, 2014.

      79. Akalın, M.K., Tekin, K., Karagöz, S., Hydrothermal liquefaction of cornelian cherry stones for bio-oil production, Bioresource Technology, 110, 682-687, 2012.

      80. Basu, P., Biomass Gasification and Pyrolysis, pp. 305-325, Academic Press, 2010.

      81. Hassan, H., Lim, J.K., Hameed, B.H., Recent Progress on Biomass CoPyrolysis Conversion into Highquality Bio-Oil, Bioresource Technology, 221, 645–655, 2016.

      82. Dillon, H.S., Laan, T., Dillon, H.S., Biofuels-At What Costs?: Government Support for Ethanol and Biodiesel in Indonesia, pp. 28-36, International Institute for Sustainable Development, 2008.

      84. Bridgwater, A.V., Renewable fuels and chemicals by thermal prossesing of biomass, Chemical Engineering Journal, 91, 87-102, 2003.

      85. Balat, M., Balat, H., Öz, C., Progress In Bioethanol Processing, Progress In Energy and Combustion Science, 34, 551–573, 2008.

      86. Prasad, R.K., Chatterjee, S., Mazumder, P.B., Gupta, S.K., Sharma, S.S., Vairale, M.G., Datta, S., Dwivedi, S.K., Gupta, D.K., Bioethanol production from waste lignocelluloses: A review on microbial


Скачать книгу