Applied Water Science. Группа авторов
González-Sálamo, J., González-Curbelo, M.Á., Hernández-Borges, J., Rodríguez-Delgado, M.Á., Use of Basolite® F300 metal-organic framework for the dispersive solid-phase extraction of phthalic acid esters from water samples prior to LC-MS determination. Talanta, 195, 236, 2019.
26. Wang, W., Wu, Q., Zang, X., Wang, C., Wang, Z., Extraction of phthalate esters in environmental water samples using layered-carbon magnetic hybrid material as adsorbent followed by their determination with HPLC. Bull. Korean Chem. Soc., 33, 3311, 2012.
27. Hadjmohammadi, M.R., Ranjbari, E., Utilization of homogeneous liquid–liquid extraction followed by HPLC-UV as a sensitive method for the extraction and determination of phthalate esters in environmental water samples. Int. J. Environ. Anal. Chem., 92, 1312, 2012.
28. Polo, M., Llompart, M., Garcia-Jares, C., Cela, R., Multivariate optimization of a solid-phase microextraction method for the analysis of phthalate esters in environmental waters. J. Chromatogr. A, 1072, 63, 2005.
29. González-Sálamo, J., Socas-Rodríguez, B., Hernández-Borges, J. Analytical methods for the determination of phthalates in food. Curr. Opin. Food Sci., 22, 122, 2018.
30. González-Sálamo, J., González-Curbelo, M.Á., Socas-Rodríguez, B., Hernández-Borges, J., Rodríguez-Delgado, M.Á., Determination of phthalic acid esters in water samples by hollow fiber liquid-phase microextraction prior to gas chromatography tandem mass spectrometry. Chemosphere, 201, 254, 2018.
31. Lv, X., Hao, Y., Jia, Q., Preconcentration procedures for phthalate esters combined with chromatographic analysis. J. Chromatogr. Sci., 51, 632, 2013.
32. Tsochatzis, E.D., Tzimou-Tsitouridou, R., Gika, H.G., Analytical methodologies for the assessment of phthalate exposure in humans. Crit. Rev. Anal. Chem., 47, 279, 2017.
33. Lord, H., Pawliszyn, J., Microextraction of drugs. J. Chromatogr. A, 902, 17, 2000.
34. Sajid, M., Płotka-Wasylka, J., Combined extraction and microextraction techniques: Recent trends and future perspectives. TrAC Trends Anal. Chem., 103, 74, 2018.
35. González-Sálamo, J., Socas-Rodríguez, B., Hernández-Borges, J., Rodríguez-Delgado, M.Á., Nanomaterials as sorbents for food sample analysis. TrAC Trends Anal. Chem., 85, 203, 2016.
36. Socas-Rodríguez, B., González-Sálamo, J., Hernández-Borges, J., Rodríguez- Delgado, M.Á., Recent applications of nanomaterials in food safety. TrAC Trends Anal. Chem., 96, 172, 2017.
37. González-Sálamo, J., Varela-Martínez, D.A., Cairós, C., González-Curbelo, M.Á., Hernández-Borges, J., Nanomaterials have come to stay: An overview of their use as sorbents in sample preparation. LG-GC North Am., 37, 22, 2019.
38. Cousins, I.T., Mackay, D., Parkerton, T.F., Physical-chemical properties and evaluative fate modelling of phthalate esters, in: BT - Series anthropogenic compounds: Phtalate esters, C.A. Staples (Ed.), pp. 57–84, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.
39. Banitaba, M.H., Davarani, S.S.H., Pourahadi, A., Solid-phase microextraction of phthalate esters from aqueous media by electrophoretically deposited TiO2 nanoparticles on a stainless steel fiber. J. Chromatogr. A, 1283, 1, 2013.
40. Asadollahzadeh, H., Noroozian, E., Maghsoudi, S., Solid-phase microextraction of phthalate esters from aqueous media by electrochemically deposited carbon nanotube/polypyrrole composite on a stainless steel fiber. Anal. Chim. Acta, 669, 32, 2010.
41. Song, X.-L., Chen, Y., Yuan, J.-P., Qin, Y.-J., Zhao, R.-S., Wang, X., Carbon nanotube composite microspheres as a highly efficient solid-phase microextraction coating for sensitive determination of phthalate acid esters in water samples. J. Chromatogr. A, 1468, 17, 2016.
42. Behzadi, M., Noroozian, E., Mirzaei, M., Electropolymerization of carbon nanotubes/poly-ortho-aminophenol nanocomposite on a stainless steel fiber for the solid-phase microextraction of phthalate esters. RSC Adv., 4, 50426, 2014.
43. Zhang, M., Huang, J., Zeng, J., Zhang, C., Silicon dioxide–poly(dimethylsiloxane) with a bilayer structure, incorporating multi-walled carbon nanotubes, supported on stainless steel wire as a solid-phase microextraction fiber for the determination of trace phthalate esters in drinking water sample. RSC Adv., 4, 12313, 2014.
44. Eskandarpour, N., Sereshti, H., Electrospun polycaprolactam-manganese oxide fiber for headspace-solid phase microextraction of phthalate esters in water samples. Chemosphere, 191, 36, 2018.
45. He, J., Lv, R., Zhan, H., Wang, H., Cheng, J., Lu, K., Wang, F., Preparation and evaluation of molecularly imprinted solid-phase micro-extraction fibers for selective extraction of phthalates in an aqueous sample. Anal. Chim. Acta, 674, 53, 2010.
46. Guo, H., Song, N., Wang, D., Ma, J., Jia, Q., A modulation approach for covalent organic frameworks: Application to solid phase microextraction of phthalate esters. Talanta, 198, 277, 2019.
47. Zhao, R.-S., Liu, Y.-L., Zhou, J.-B., Chen, X.-F., Wang, X., Bamboo charcoal as a novel solid-phase microextraction coating material for enrichment and determination of eleven phthalate esters in environmental water samples. Anal. Bioanal. Chem., 405, 4993, 2013.
48. Herrera-Herrera, A., Asensio-Ramos, M., González Curbelo, M.Á., Hernández-Borges, J., Carbon nanotubes applications in solid-phase extraction, in: Carbon Nanotubes: Synthesis, Properties and Applications, A.K. Mishra (Ed.), pp. 1-42, Nova Science Publishers, 2013.
49. González-Curbelo, M.Á., Rodríguez-Delgado, M.Á., Hernández-Borges, J., Nuevas aportaciones en el tratamiento de muestra para el análisis de plaguici-das, Servicio de Publicaciones de la Universidad de La Laguna, 2015.
50. González-Sálamo, J., Herrera-Herrera, A. V, Fanali, C., Hernández-Borges, J., Magnetic nanoparticles for solid-phase extraction. LC GC Eur., 29, 180, 2016.
51. Ríos, Á., Zougagh, M., Recent advances in magnetic nanomaterials for improving analytical processes. TrAC Trends Anal. Chem., 84, 72, 2016.
52. Tashakkori, P., Erdem, P., Merdivan, M., Bozkurt, S.S., Determination of phthalate esters in water and coffee by solid-phase microextraction using vinyl terminated imidazolium based ionic liquid grafted on graphene oxide coatings. Chemistry Select, 4, 2307, 2019.
53. Socas-Rodríguez, B., González-Sálamo, J., Hernández-Borges, J., Chapter 2 Carbon Nanomaterials in Sample Preparation, in: Carbon-based Nanomaterials in Analytical Chemistry, C.D. García, A.G. Crevillén, A. Escarpa (Eds.), pp. 37–68, The Royal Society of Chemistry, 2019.
54. Liu, L., Zhang, J., Zhao, J., Liu, F., Mechanical properties of graphene oxides. Nanoscale, 4, 5910, 2012.
55. Singh, S.K., Savoy, A.W., Ionic liquids synthesis and applications: An overview. J. Mol. Liq., 297, 112038, 2020.
56. Anderson, J.L., Ding, J., Welton, T., Armstrong, D.W., Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc., 124, 14247, 2002.
57. Włoch, M., Datta, J., Chapter Two - Synthesis and polymerisation techniques of molecularly imprinted polymers, in: MIP Synthesis, Characteristics and Analytical Application, vol. 86, M. Marc (Ed.), pp. 17–40, Elsevier, 2019.
58. Kosheleva, R.I., Mitropoulos, A.C., Kyzas, G.Z., Chapter 7 - New trends in molecular imprinting techniques, in: Advanced Low-Cost Separation Techniques in Interface Science, vol. 30, G. Kyzas, A. Mitropoulos (Eds.), pp. 151–172, Elsevier, 2019.
59. Zaidi, S.A., Molecular imprinting polymers and their composites: a promising material for diverse applications. Biomater. Sci., 5, 388, 2017.
60. Costa Queiroz, M.E., Donizeti de Souza, I., Marchioni, C., Current advances and applications of in-tube solid-phase microextraction.