Polysaccharides. Группа авторов
employed are discussed. Emphasis is given to the applications of different polysaccharide-based scaffolds. The necessity to improve the efficiency of polysaccharide-based scaffolds is described.
Chapter 15 discusses the structure of polysaccharides and how structural integration plays a pivotal role in governing the polysaccharide dissolution in water. Polysaccharide solubility is explained based on various factors such as intermolecular forces, molecular weight, branching, and chemical modification of biopolymer.
Chapter 16 is devoted to nanomaterials, such as aerogels, graphene sponge, quantum dots and nanotubes, produced from natural polysaccharides: plant and bacterial cellulose, chitosan, and alginate. The effect of carbonization conditions on the morphology and func-tional properties of biocarbon is considered with a focus on the practical application of the nanomaterials.
Chapter 17 presents the main structural properties of the most relevant types of poly-saccharides. Significant investigations on the rheological behavior of polysaccharides and complex systems derived from them are discussed in regards to the polymer chemical structure, including the applicability of such materials.
Chapter 18 elaborates the use of novel gum-based nanocomposites with particular emphasis on their biomedical applications. In contrast to their synthetic counterparts, the naturally occurring gum polysaccharides and their derived nanostructured materials exhibit a range of applications in the biomedical sector owing to their exceptional struc-tures, physicochemical properties, and functionalities.
Chapter 19 discusses the crucial physical and chemical properties of alginate. It also summarizes the important applications of alginate in biomedical fields such as bone tissue engineering, and in pharmaceutical applications such as wound dressing, protein delivery, and delivery of vaccines.
Chapter 20 provides detailed information about the biological function, modes of action, and the application of marine-derived functional polysaccharide as a sustainable solution that could mitigate several challenges affecting mankind.
Chapter 21 discusses various polysaccharide-based nanostructured materials and nanoparticles and their importance in food industries. It also includes fabrication of nano- and microparticles using various methods such as electrospinning, dip coating, film cast-ing, and physical mixing, layer-by-layer assembly, colloidal assembly and co-precipitation, in-situ nanoparticles preparation and ionotropic gelation. The biocompatibility of carbon-based nanomaterials is also discussed.
Chapter 22 describes the anticancer potential of polysaccharides and their utilization in anticancer therapy. Several modes of action of polysaccharides to treat cancer are elab-orated. Also discussed are the applications of anticancer polysaccharides in different types of cancers and the anticancer effects of polysaccharides in traditional therapies such as chemotherapy.
Chapter 23 discusses the various sources of polysaccharides-based biomaterials and their properties that are beneficial for the development of membranes. The application of polysaccharides membranes in food packaging is also discussed in detail. The advantage of using nano-based polysaccharides materials in improving the physical and mechanical properties of membranes are also explained.
Chapter 24 details different sources of natural polysaccharides with potent anticancer activity. It also explains the mechanism of action, cell signaling and immunomodulatory effects of natural polysaccharides. Additionally, it covers information regarding the preclin-ical and clinical applications of polysaccharides in cancer treatment.
Chapter 25 showcases some of the recent research findings where chitosan, a natural bio-polymer and its derived materials, are applied as catalysts in various synthetic approaches towards various heterocyclic scaffolds.
Chapter 26 elaborates on the different types of polysaccharides derived from plants, ani-mals, and bacteria. Various polysaccharide-based composites using organic or inorganic fillers are discussed. The fabrication protocols, the interaction of the fillers with the matrix, and the properties are highlighted. Finally, the applications in diverse industrial sectors are presented.
Chapter 27 focuses on the preparation, structure, and properties of different types of liq-uid crystals from polysaccharidal materials such as cellulose, cellulose derivatives, amylose, dextrin, chitin, and schizophyllan. The effect of the addition of different substances on the thermal and photonic properties of liquid crystals is also covered.
Chapter 28 highlights international patents on the utilization of polysaccharides either in their pristine form or in their derivatives in the pharmaceutical, cosmetic, battery, and paper industries. This chapter also discusses the practical exploration of new poly-saccharide derivatives and demonstrates the need for developing technologies involving polysaccharides.
Chapter 29 discusses the use of different polysaccharides in controlled release drug deliv-ery system. These polysaccharides obtained from different plant, animal, microorganism, fungal and algal sources and their application in the development of modified release oral, transdermal, buccal and ocular drug delivery system are extensively discussed.
Chapter 30 discusses the different types and sources of polysaccharides—from micro-organisms to plants and animals—and also explains their important role in human health and nutrition. Additionally, the major health benefits of polysaccharides showing antiviral, antimicrobial, anti-inflammatory, anticancer, anti-obesity, antioxidant, and neuroprotec-tive effects, and their role in wound healing and wound dressing are discussed.
Chapter 31 presents the fundamentals of semi-synthetic and fully synthetic polysac-charide vaccine platforms and their advantages over common polysaccharide vaccines. Following a brief presentation of important historical achievements in vaccinology, the current synthetic polysaccharide vaccine pipelines, novel preclinical and clinical trials, and forthcoming opportunities in the field are also reflected.
Chapter 32 provides detailed information on the application of polysaccharides in the area of biomedicine and nutrition. The various types and modes of action of polysaccha-rides derived from numerous sources as well as their function are highlighted.
The Editors
March 2021
1
Natural Polysaccharides From Aloe vera L. Gel (Aloe barbadensis Miller): Processing Techniques and Analytical Methods
Silvana Teresa Lacerda Jales1,2, Raquel de Melo Barbosa3,4*, Girliane Regina da Silva5, Patricia Severino6,7 and Tulio Flávio Accioly de Lima Moura1,4
1Program on Development and Technological Innovation in Medications, Federal University of Rio Grande do Norte, Natal, Brazil
2Department