Polysaccharides. Группа авторов

Polysaccharides - Группа авторов


Скачать книгу
Formation, characterization, and application. Crit. Rev. Food Sci. Nutr., 48, 361, 2008.

      38. Lee, J.Y., Park, H.J., Lee, C.Y., Choi, W.Y., Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. LWT Food Sci. Technol., 36, 323, 2003.

      39. Fabra, M.J., Hambleton, A., Talens, P., Debeaufort, F., Chiralt, A., Voilley, A., Influence of interactions on water and aroma permeabilities of ι-carrageenan–oleic acid–beeswax films used for flavour encapsulation. Carbohydr. Polym., 76, 325, 2009.

      40. Cook, M.T., Tzortzis, G., Charalampopoulos, D., Khutoryanskiy, V.V., Microencapsulation of probiotics for gastrointestinal delivery. J. Control. Release, 162, 56, 2012.

      41. Lupo, B., Maestro, A., Porras, M., Gutiérrez, J.M., González, C., Preparation of alginate micro-spheres by emulsification/internal gelation to encapsulate cocoa polyphenols. Food Hydrocoll., 38, 56, 2014.

      42. Reis, C.P., Neufeld, R.J., Vilela, S., Ribeiro, A.J., Veiga, F., Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J. Microencapsul., 23, 245, 2006.

      43. Rojas-Graü, M.A., Raybaudi-Massilia, R.M., Soliva-Fortuny, R.C., Avena-Bustillos, R.J., McHugh, T.H., Martín-Belloso, O., Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biol. Technol., 45, 2, 254, 2007.

      44. Sipahi, R.E., Castell-Perez, M.E., Moreira, R.G., Gomes, C., Castillo, A., Improved multilayered antimicrobial alginate-based edible coating extends the shelf life of fresh-cut watermelon (Citrullus lanatus). LWT Food Sci. Technol., 51, 1, 9, 2013.

      45. Robles-Sánchez, R.M., Rojas-Graü, M.A., Odriozola-Serrano, I., González-Aguilar, G., Martin-Belloso, O., Influence of alginate-based edible coating as carrier of antibrowning agents on bioactive compounds and antioxidant activity in fresh-cut Kent mangoes. LWT Food Sci. Technol., 50, 1, 240, 2013.

      46. Jiang, T., Kim, Y.K., Singh, B., Kang, S.K., Choi, Y.J., Cho, C.S., Effect of microencapsulation of Lactobacillus plantarum 25 into alginate/chitosan/alginate microcapsules on viability and cytokine induction. J. Nanosci., 13, 8, 5291, 2013.

      47. Lee, K.Y. and Mooney, D.J., Alginate: Properties and biomedical applications. Prog. Polym. Sci., 37, 1, 106, 2012.

      48. Helgerud, T., Gåserød, O., Fjæreide, T., Andersen, P.O., Larsen, C.K., Alginates, in: Food Stabilizers, Thickeners and Gelling Agents, pp. 50–72, Wiley-Blackwell, United Kingdom, 2010.

      49. Draget, K.I., Skjåk-Bræk, G., Stokke, B.T., Similarities and differences between alginic acid gels and ionically crosslinked alginate gels. Food Hydrocoll., 20, 2–3, 170, 2006.

      50. Mancini, F. and McHugh, T.H., Fruit–alginate interactions in novel restructured products. Food/Nahrung, 44, 3, 152, 2000.

      51. Manjunatha, S.S. and Das Gupta, D.K., Instrumental textural characteristics of restructured carrot cubes. Int. J. Food Prop., 9, 3, 453, 2006.

      52. Banerjee, A., Use of novel polysaccharides in textile printing, Doctoral dissertation, Colorado State University, Colorado, USA, 2013.

      54. Nishide, E., Anzai, H., Uchida, N., Effects of alginates on the ingestion and excretion of cholesterol in the rat. J. Appl. Phycol., 5, 2, 207, 1993.

      55. Kimura, Y., Watanabe, K., Okuda, H., Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J. Ethnopharmacol., 54, 1, 47, 1996.

      56. Li, B., Lu, F., Wei, X., Zhao, R., Fucoidan: Structure and bioactivity. Molecules, 13, 8, 1671, 2008.

      57. Kylin, H., Zur Biochemie der Meeresalgen. Hoppe Seylers Z. Physiol. Chem., 83, 3, 171, 1913.

      58. Percival, E.G.V., Ross, A.G., Fucoidin Part, I., The isolation and purification of fucoidin from brown seaweeds. J. Chem. Soc., 717–720, 1950.

      59. Lunde, G., Heen, E., Oy, E., Uber fucoidin. H. Z. Physiol. Chem., 247, 189, 1937.

      60. Ale, M.T., Mikkelsen, J.D., Meyer, A.S., Important determinants for fucoidan bioactivity: A critical review of structure–function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs, 9, 10, 2106, 2011.

      61. Cumashi, A., Ushakova, N.A., Preobrazhenskaya, M.E., D’Incecco, A., Piccoli, A. et al., A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17, 5, 541, 2007.

      62. Nagaoka, M., Shibata, H., Kimura-Takagi, I., Hashimoto, S., Kimura, K. et al., Structural study of fucoidan from Cladosiphon okamuranus Tokida. Glycoconj. J, 16, 1, 19, 1999.

      63. Gupta, S. and Abu-Ghannam, N., Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol., 22, 6, 315, 2011.

      64. Black, W.A.P., Dewar, E.T., Woodward, F.N., Manufacture of algal chemicals. IV.—Laboratoryscale isolation of fucoidin from brown marine algae. J. Sci. Food Agric., 3, 122, 1952.

      65. Nishino, T., Nishioka, C., Ura, H., Isolation and partial characterization of a novel amino sugar-containing fucan sulfate from commercial Fucus vesiculosus fucoidan. Carbohydr. Res., 255, 213, 1994.

      66. Bilan, M.I., Grachev, A.A., Ustuzhanina, N.E., Structure of a fucoidan from the brown seaweed Fucus evanescens C.Ag. Carbohydr. Res., 337, 719, 2002.

      67. Bilan, M.I., Grachev, A.A., Shashkov, A.S., Nifantiev, N.E., Usov, A.I., Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydr. Res., 341, 238, 2006.

      68. Kitamura, K., Matsuo, M., Yasui, T., Fucoidan from brown seaweed Laminaria angustata var. longissima. Agric. Biol. Chem., 55, 2, 615, 1991.

      69. Mian, J. and Percival, E., Carbohydrates of the brown seaweeds Himanthalia lorea and Bifurcaria bifurcata Part II. structural studies of the “fucans”. Carbohydr. Res., 26, 147, 1973.

      70. Ponce, N.M.A., Pujol, C.A., Damonte, E.B., Fucoidans from the brown seaweed Adenocystis utricularis: Extraction methods, antiviral activity and structural studies. Carbohydr. Res., 338, 153, 2003.

      71. Fitton, J.H., Irhimeh, M.R., Teas, J., Marine algae and polysaccharides with therapeutic applications, in: Marine Nutraceuticals and Functional Foods, C. Barrow, and F. Shahidi, (Eds.), pp. 345–366, CRC Press, Boca Raton, FL, 2008.

      72. Haroun-Bouhedja, F., Ellouali, M., Sinquin, C., Boisson-Vidal, C., Relationship between sulfate groups and biological activities of fucans. Thromb. Res., 100, 453, 2000.

      73. Kim, K.T., Rioux, L.E., Turgeon, S.L., Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochem., 98, 27, 2014.

      74. Lim, S.J., Wan Aida, W.M., Maskat, M.Y., Mamot, S., Ropien, J., Mazita Mohd, D., Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocoll., 42, 1, 280, 2014.

      76. Rioux, L.E., Turgeon, S.L., Beaulieu, M., Characterization of polysaccharides extracted from brown seaweeds. Carbohydr. Polym., 69, 530, 2007a.

      77. Rioux, L.E., Turgeon, S.L., Beaulieu, M., Rheological characterization of polysaccharides extracted from brown seaweeds.


Скачать книгу