Pleasant Ways in Science. Richard Anthony Proctor

Pleasant Ways in Science - Richard Anthony Proctor


Скачать книгу
theory can be expected to do is this—it may explain how dark lines of any sort may arise within the spectrum.” Kirchhoff, in 1859, showed not only how dark lines of any sort may appear, but how and why they do appear, and precisely what they mean. He found that the dark lines of the solar spectrum are due to the vapours of various elements in the sun’s atmosphere, and that the nature of such elements may be determined from the observed position of the dark lines. Thus when iron is raised by the passage of the electric spark to so intense a degree of heat that it is vaporized, the light of the glowing vapour of iron is found to give a multitude of bright lines along the whole length of the spectrum—that is, some red, some orange, some yellow, and so on. In the solar spectrum corresponding dark lines are found along the whole length of the spectrum—that is, some in the red, some in the orange, yellow, etc., and precisely in those parts of these various spectral regions which the bright lines of glowing iron would occupy. Multitudes of other dark lines exist of course in the solar spectrum. But those corresponding to the bright lines of glowing iron are unquestionably there. They are by no means lost in the multitude, as might be expected; but, owing to the peculiarity of their arrangement, strength, etc., they are perfectly recognizable as the iron lines reversed, that is, dark instead of bright. Kirchhoff’s researches showed how this is to be interpreted. It means that the vapour of iron exists in the atmosphere of the sun, glowing necessarily with an intensely bright light; but, being cooler (however intensely hot) than the general mass of the sun within, the iron vapour absorbs more light than it emits, and the result is that the iron lines, instead of appearing bright, as they would if the iron vapour alone were shining, appear relatively dark on the bright rainbow-tinted background of the solar spectrum.

      Thus was it shown that in the atmosphere of the sun there is the glowing vapour of the familiar metal, iron; and in like manner other metals, and one element (hydrogen) which is not ordinarily regarded as a metal, were shown to be present in the sun’s atmosphere. In saying that they are present in the sun’s atmosphere, I am, in point of fact, saying that they are present in the sun; for the solar atmosphere is, in fact, the outer part of the sun himself, since a very large part, if not by far the greater part, of the sun’s mass must be vaporous. But no other elements, except the metals iron, sodium, barium, calcium, magnesium, aluminium, manganese, chromium, cobalt, nickel, zinc, copper, and titanium, and the element hydrogen, were shown to be present in the sun, by this method of observing directly the solar dark lines. In passing, I may note that there are reasons for regarding hydrogen as a metallic element, strange though the idea may seem to those who regard hardness, brightness, malleability, ductility, plasticity, and the like, as the characteristic properties of metals, and necessarily fail to comprehend how a gas far rarer, under the same conditions, than the air we breathe, and which cannot possibly be malleable, ductile, or the like, can conceivably be regarded as a metal. But there is in reality no necessary connection between any one of the above properties and the metallic nature; many of the fifty-five metals are wanting in all of these properties; nor is there any reason why, as we have in mercury a metal which at ordinary temperatures is a liquid, so we might have in hydrogen a metal which, at all obtainable temperatures, and under all obtainable conditions of pressure, is gaseous. It was shown by the late Professor Graham (aided in his researches most effectively by Dr. Chandler Roberts) that hydrogen will enter into such combination with the metal palladium that it may be regarded as forming, for the time, with the palladium, an alloy; and as alloys can only be regarded as compounds of two or more metals, the inference is that hydrogen is in reality a metallic element.

      Fourteen only of the elements known to us, or less than a quarter of the total number, were thus found to be present in the sun’s constitution; and of these all were metals, if we regard hydrogen as metallic. Neither gold nor silver shows any trace of its presence, nor can any sign be seen of platinum, lead, and mercury. But, most remarkable of all, and most perplexing, was the absence of all trace of oxygen and nitrogen, two gases which could not be supposed wanting in the substance of the great ruling centre of the planetary system. It might well be believed, indeed, that none of the five metals just named are absent from the sun, and indeed that every one of the forty metals not recognized by the spectroscopic method nevertheless exists in the sun. For according to the nebular hypothesis of the origin of our solar system, the sun might be expected to contain all the elements which exist in our earth. Some of these elements might indeed escape discovery, because existing only in small quantities; and others (as platinum, gold, and lead, for example), because but a small portion of their vaporous substance rose above the level of that glowing surface which is called the photosphere. But that oxygen, which constitutes so large a portion of the solid, liquid, and vaporous mass of our earth, should not exist in enormous quantities, and its presence be very readily discernable, seemed amazing indeed. Nitrogen, also, might well be expected to be recognizable in the sun. Carbon, again, is so important a constituent of the earth, that we should expect to discover clear traces of its existence in the sun. In less degree, similar considerations apply to sulphur, boron, silicon, and the other non-metallic elements.

      It was not supposed, however, by any one at all competent to form an opinion on the subject, that oxygen, nitrogen, and carbon are absent from the sun. It was perceived that an element might exist in enormous quantities in the substance of the sun, and yet fail to give any evidence of its presence, or only give such evidence as might readily escape recognition. If we remember how the dark lines are really caused, we shall perceive that this is so. A glowing vapour in the atmosphere of the sun absorbs rays of the same colour as it emits. If then, it is cooler than the glowing mass of the sun which it enwraps, and if, notwithstanding the heat received from this mass, it remains cooler, then it suffers none of those rays to pass earthwards.1 It emits rays of the same kind (that is, of the same colour) itself, but, being cooler, the rays thus coming from it are feebler; or, to speak more correctly, the ethereal waves thus originated are feebler than those of the same order which would have travelled earthwards from the sun but for the interposed screen of vapour. Hence the corresponding parts of the solar spectrum are less brilliant, and contrasted with the rainbow-tinted streak of light, on which they lie as on a background, they appear dark.

      In order, then, that any element may be detected by its dark lines, it is necessary that it should lie as a vaporous screen between the more intensely heated mass of the sun and the eye of the observer on earth. It must then form an enclosing envelope cooler than the sun within it. Or rather, some part of the vapour must be thus situated. For enormous masses of the vapour might be within the photospheric surface of the sun at a much higher temperature, which yet, being enclosed in the cooler vaporous shell of the same substance, would not be able to send its light rays earthwards. One may compare the state of things, so far as that particular element is concerned, to what is presented in the case of a metallic globe cooled on the outside but intensely hot within. The cool outside of such a globe is what determines the light and heat received from it, so long as the more heated mass within has not yet (by conduction) warmed the exterior shell. So in the case of a vapour permeating the entire mass, perhaps, of the sun, and at as high a temperature as the sun everywhere except on the outside: it is the temperature of the outermost part of such a vaporous mass which determines the intensity of the rays received from it—or in other words, determines whether the corresponding parts of the spectrum shall be darker or not than the rest of the spectrum. If the vapour does not rise above the photosphere of the sun in sufficient quantity to exercise a recognizable absorptive effect, its presence in the sun will not be indicated by any dark lines.

      I dwell here on the question of quantity, which is sometimes overlooked in considering the spectroscopic evidence of the sun’s condition, but is in reality a very important factor in determining the nature of the evidence relating to each element in the solar mass. In some cases, the quantity of a material necessary to give unmistakable spectroscopic evidence is singularly small; insomuch that new elements, as thallium, cæsium, rubidium, and gallium, have been actually first recognized by their spectral lines when existing in such minute quantities in the substances examined as to give no other trace whatever of their existence. But it would be altogether a mistake to suppose that some element existing in exceedingly small quantities, or, more correctly, existing in the form of an exceedingly rare vapour in the sun’s atmosphere, would be detected by means of its dark lines, or by any other method depending on the study of the solar spectrum. When we place a small portion of some substance in the space between the carbon points of an electric


Скачать книгу