Physiology: The Science of the Body. Ernest G. Martin

Physiology: The Science of the Body - Ernest G. Martin


Скачать книгу
when we are ailing do we begin to think about them. Of course, they are absolutely necessary to us, and we should die instantly if one of the more important of them were to stop working, but the part they play is not one which enters actively into our consciousness, as do the muscles, nerves, and sense organs.

      Naturally, we will ask what all these other organs are for if they do not share in our conscious life. Why can we not get along with just those that we use for getting food, for avoiding harm, for play, and for the other activities which they carry on? The answer to this question is found in the fact emphasized above that continuous power development is necessary to continued life. By themselves the muscles, nerves, and sense organs cannot carry on power development; they require the aid of a great many other organs to do this. Just how these other organs work will be described later; at present it will be enough to recall that every muscle, every nerve, and every sense organ is actually made up of a great many of the tiny construction units—the cells about which we were talking a few pages back—and that every one of these cells must be developing power all the time if it is to go on living. In order to be able to do this they must, every one, be able to oxidize fuel continuously, and this means that they must receive constant supplies, both of the fuel itself and of the oxygen with which it combines. Some system of delivering these materials must be in operation, and in case the materials have to be prepared for use beforehand this must be provided for also. The heart, the lungs, the stomach, and the various other organs that are useful but not conspicuous, are concerned in these necessary jobs. In an automobile factory we have a similar situation; the men that stand at the machines actually make the parts that go into the finished automobiles, but unless other men are hard at work preparing the castings, and bringing them to where the machine operators can get them, not many automobiles will be turned out. So in the body, unless the various organs are carrying on their work of preparing and delivering materials to the muscles, the nerves, and the sense organs, these latter cannot perform their tasks of getting the food for the whole body and of securing the body against harm, nor can they carry on the pleasant, but not absolutely necessary, activities of play and recreation.

       THE SOURCES OF FOOD

       Table of Contents

      WE have talked about the necessity of power development in all living things, and have seen that power development depends on the oxidation of fuel. Of course, our fuel is the food that we eat. No substance is suitable for fuel unless it contains power which can be gotten out by oxidation, and unless, in addition, it is suited to the particular kind of oxidation that goes on in the body, and can be handled by the body. Wood is excellent fuel for some purposes, but as a food for man it has no value, even when ground fine and mixed with flour as was done in some European countries during the Great War, because wood cannot be handled by the body in the way in which a usable fuel must be. Although wood is not good food, closely related materials are, and in fact make up the bulk of it. All fuel food is either vegetable or animal. All animal food traces back finally to the vegetable world, and it is an interesting fact that we do not usually care to eat flesh that is more than one remove from the vegetable kingdom. Animals that are flesh eaters are not considered fit for food, except in the case of fish and birds, and the flesh that these eat is not commonly thought of as being such, since it consists mostly of the flesh of insects, frogs, and fish themselves.

      The real sources of food, then, are in the vegetable world. Of the countless thousands of kinds of plants that exist a few dozen have proven to be of enough use for human food, or for food for the animals on which human beings feed, to justify us in taking the trouble to raise them on our farms and in our gardens. There must be something about these particular plants to make us prefer them. If we look into the reason for the preference we shall understand something of the qualities which make plants good for food in the first place. At the beginning of the chapter were set down the things which make a substance fit for food. These are: the ability to yield power by oxidation, and a composition suitable to be used by the body. The ability to yield power involves the possession of a store of it. Power, or energy, which means the same thing in our present use of the words, is never present anywhere except as the result of an earlier exhibition of power. It is not made out of nothing. The sun is a reservoir of energy on which the earth draws, and we do not know with any certainty from whence the sun got its power. The heated center of the earth itself is a reservoir of power on which we may draw at some time in the future, when cheaper sources are used up. Except for energy from these sources and for trifling amounts that may be brought in by meteorites, there is none on the earth’s surface that has not always been here. On the other hand, the earth is constantly losing energy into space. The amount that reaches us from the sun balances our losses into space, so that the total energy present holds fairly steady. The energy that comes to us from the sun is chiefly in the two forms of heat and light. In actual horsepower the heat far outweighs the light, but in importance to mankind one stands about on a par with the other, for while without the sun’s heat the earth would become so cold that we would all die, without its light there would be no food and we would all starve. This is another way of saying that the energy that plants store up, and that we get when we eat them, comes originally from the light of the sun. Plants, like animals, are made up of cells. Those with which we are familiar consist of a great many cells, of a good many different kinds. Some are in the roots, others in the stems, still others in the leaves; the blossoms, fruits, and seeds are made up, likewise, of cells. The cells near the surface of the leaves, and, in many kinds of plants, near the surface of the stems as well, contain a green substance known as chlorophyll. This substance enables the cells in which it is present, although we do not know just how, to manufacture sugar, utilizing the energy of the sunlight for the purpose.

      Sugar is composed of three very common chemical elements, carbon, hydrogen, and oxygen. As we all know, hydrogen and oxygen in combination of two atoms of hydrogen to one of oxygen form water; the most familiar of chemical symbols is that expressing this combination, namely H{2}O. Carbon, which we know in an almost pure state in anthracite coal, and in even purer form in diamonds, forms a combination with oxygen known as carbon dioxide. This is a gas; it makes up a small fraction of the air. The amount in the air is increased whenever coal or any other carbon-containing material is burned, since carbon dioxide is the product of the oxidation of carbon. Except in the arid regions of the earth there is always some water in the soil a greater or less distance below the surface of the ground. Water and carbon dioxide between them contain all the elements of which sugar is composed. The chlorophyll-containing cells are the factory; the sunlight is the power; and the carbon dioxide and water are the raw materials. Sugar is the finished product, and wherever sunlight is falling on green plants, whether directly or through a layer of cloud, its manufacture is going on. Sugar will oxidize readily, and in so doing will yield abundant power. The energy which it contains was derived by transformation from the energy of the sunlight. With the exception of a few kinds of bacteria every living thing on the earth depends for its food, and so for its energy, either directly or indirectly on the sugar which green plants manufacture. Since sugar dissolves in water it cannot easily be held in storage, so by a simple chemical process the plant changes it to starch, and it is in this latter form that we get it, except in the case of a few plants, like sugar cane.

      The green parts of plants are the only places where sugar is made. We eat a certain amount of green food in lettuce and asparagus and similar vegetables, but for the most part the sugar or starch we eat comes from parts of plants that are not green. There is evidently a transportation from the point of manufacture to points of storage. The means of transport is in the sap; since starch is not soluble in water, it must be changed back into sugar. This is done, and then, by the movement of sap the dissolved sugar is carried to the points of storage, roots in such vegetables as beets, underground stems in potatoes, above ground stems in sugar cane, fruits or seeds in orchard and grain crops. In such of these as are sweet, the sugar itself is held in storage; in most kinds it is changed back into starch. Where the storage is in the form of starch the vegetable ordinarily keeps better than when sugar is the substance on deposit.

      A few kinds of plants—olives, peanuts, and cocoanuts, for example—convert the sugar into oil and store their surplus material in that


Скачать книгу