Introduction To Modern Planar Transmission Lines. Anand K. Verma

Introduction To Modern Planar Transmission Lines - Anand K. Verma


Скачать книгу
rel="nofollow" href="#ulink_7e479a52-2846-5796-a7a6-0589958bb843">equation (4.6.21a).

      Two cases of wave propagations in the uniaxial anisotropic media – without off‐diagonal elements and with off‐diagonal elements, are considered in this section. The dispersion relation is also discussed leading to the concept of hypermedia useful for the realization of hyperlens [J.1, J.5–J.7].

      4.7.1 Wave Propagation in Uniaxial Medium

      The unbounded lossless homogeneous uniaxial medium is considered. The y‐axis is the optical axis, i.e. the extraordinary axis. In the direction of the optic axis, the permittivity is different as compared to the other two directions. The medium is described by a diagonalized matrix with all off‐diagonal elements zero. The permeability of the medium is μ0 and its permittivity tensor is expressed as follows:

      (4.7.1)equation

      On expansion, the above equations provide the following sets of transverse field components:

Schematic illustration of wave propagation uniaxial media.

      On eliminating Hz and Hy from the above equations, wave equations for the electric field transverse components are obtained. Likewise, the wave equations for magnetic field transverse components are obtained on eliminating Ez and Ey:

      On solving the above wave equations, the time‐harmonic wave propagating in the positive x‐direction is obtained as,

      In the above equations, k0 and c are wavenumber and velocity of EM‐waves in free space. Also, ke and ko are wavenumbers of the extraordinary waves and ordinary waves, respectively, traveling in the x‐direction with phase velocities vpe and vpo. The extraordinary waves are y‐polarized, i.e. TE‐polarized wave viewing the permittivity component εr‖. The ordinary waves are z‐polarized, i.e. TM‐polarized wave viewing the permittivity component εr⊥. Thus, an obliquely incident linearly polarized EM‐waves, with Ey and Ez components, entering the slab of the anisotropic medium is split into two distinct normal mode waves and travel with two different phase velocities. They come out from the slab with a phase difference. This phenomenon is known as double refraction or birefringence. The dispersion relation for both normal waves is discussed in subsection (4.7.5).

      (4.7.7)equation

      The plasma medium could be taken as an example. It is a uniaxial anisotropic medium with εr⊥ = 1 and εr‖ = εr. In this case, y‐polarized extraordinary waves travel with a slower phase velocity vpe as compared to a phase velocity vpo of the z‐polarized ordinary waves. So, the extraordinary waves are also known as the slow‐waves with εr‖ > εr⊥. The ordinary waves are called fast‐waves. The optic axis of the uniaxial medium is called the slow‐wave axis and ordinary axis as the fast‐wave axis.

      Waveplates and Phase Shifters

      The incident linearly polarized wave on a slab at 45° has two in‐phase E‐field components. After traveling a distance d, the field components develop a phase difference Δφ. So, for the case Eoy = Eoz = E0 and a phase difference Δφ = 90° at the output of the slab of thickness x = d, the uniaxial anisotropic dielectric


Скачать книгу