Functionalized Nanomaterials for Catalytic Application. Группа авторов
134. Chae, S.-R., Hotze, E.M., Wiesner, M.R. et al., Possible applications of fullerene nanomaterials in water treatment and reuse, in: Nanotechnology Applications for Clean Water (2nd Edition) Solutions for Improving Water Quality Micro and Nano Technologies, A. Street, R. Sustich, J. Duncan, N. Savage (Eds.), pp. 329–338, Elsevier, William Andrew, Norwich, NY, 2014.
135. Albiter, E., Barrera-Andrade, J.M., Rojas-García, E., Valenzuela, M.A., Recent advances of nanocarbon-inorganic hybrids in photocatalysis, in: Nanocarbon and its Composites Preparation, Properties and Applications, A. Khan, M. Jawaid, Dr. Inamuddin, A.M.A. Asiri (Eds.), pp. 521–588, Woodhead Publishing, Elsevier, United Kingdom, 2019.
136. Regulska, E., Rivera-Nazario, D.M., Karpinska, J., Plonska-Brzezinska, M.E., Echegoyen, L., Zinc porphyrin-functionalized fullerenes for the sensitization of titania as a visible-light active photocatalyst: riverwaters and wastewaters remediation. Molecules, 24, 1118, 2019.
137. Chai, B., Liao, X., Song, F., Zhou, H., Fullerene modified C3N4 composites with enhanced photocatalytic activity under visible light irradiation. Dalton Trans., 43, 982–989, 2014.
138. Krishna, V., Noguchi, N., Koopman, B., Moudgil, B., Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes. J. Colloid Interf. Sci., 304, 166–171, 2006.
139. Bonchio, M., Carraro, M., Scorrano, G., Bagno, A., Photooxidation in water by new hybrid molecular photocatalysts integrating an organic sensitizer with a polyoxometalate core. Adv. Synth. Catal., 346, 648–654, 2004.
140. Wang, S., Liu, C., Dai, K., Cai, P., Chen, H., Yang, C., Huang, Q., Fullerene C70–TiO2 hybrids with enhanced photocatalytic activity under visible light irradiation. J. Mater. Chem. A, 3, 21090–21098, 2015.
141. Muthirulan, P., Devi, C.N., Sundaram, M.M., TiO2 wrapped graphene as a high performance photocatalyst for acid orange 7 dye degradation under solar/UV light irradiations. Ceram. Int., 40, 4, 5945–5957, 2014.
142. Xiang, Q., Yu, J., Jaroniec, M., Graphene-based semiconductor photocatalysts. Chem. Soc. Rev., 41, 782–796, 2012.
143. Jain, B., Hashmi, A., Sanwaria, S., Singh, A.K., Susan, M.A.B.H., Singh, A., Zinc oxide nanoparticle incorporated on graphene oxide: an efficient and stable photocatalyst for water treatment through the Fenton process. Adv. Compos. Hybrid. Mater., 3, 231–242, 2020.
144. Filice, S., D’Angelo, D., Spanò, S.F., Compagnini, G., Sinatra, M., D’Urso, L., Fazio, E., Privitera, V., Scalese, S., Modification of graphene oxide and graphene oxide-TiO2 solutions by pulsed laser irradiation for dye removal from water. Mat. Sci. Semicon. Proc., 42-1, 50–53, 2016.
145. Rao, G., Zhang, Q., Zhao, H., Chen, J., Li, Y., Novel titanium dioxide/iron (III) oxide/graphene oxide photocatalytic membrane for enhanced humic acid removal from water. Chem. Eng. J., 302, 633–640, 2016.
146. Shi, Y., Huang, J., Zeng, G., Cheng, W., Hu, J., Shi, L., Yi, K., Evaluation of self-cleaning performance of the modified g-C3N4 and GO based PVDF membrane toward oil-in-water separation under visible-light. Chemosphere, 230, 40–50, 2019.
147. Gnanamoorthy, G., Muthamizh, S., Sureshbabu, K., Munusamy, S., Padmanaban, A., Kaaviya, A., Nagarajan, R., Stephen, A., Narayanan, V., Photocatalytic properties of amine functionalized Bi2Sn2O7/rGO nanocomposites. J. Phys. Chem. Solids, 118, 21–31, 2018.
148. Liu, H., Jin, Z., Su, Y., Wang, Y., Visible light-driven Bi2Sn2O7/reduced graphene oxide nanocomposite for efficient photocatalytic degradation of organic contaminants. Sep. Purif. Technol., 142, 25–32, 2015.
149. Ong, W.-J., Tan, L.-L., Ng, Y.H., Yong, S.-T., Chai, S.-P., Graphitic Carbon Nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev., 116, 12, 7159–7329, 2016.
150. Jiang, J., Song, Y., Wang, X., Li, T., Li, M., Lin, Y., Xie, T., Dong, S., Enhancing aqueous pollutants photodegradation via fermi level matched Z-scheme BiOI/Pt/g-C3N4 photocatalyst: unobstructed photogenerated charge behavior and degradation pathway exploration. Catal. Sci. Technol., 10, 3324–3333, 2020.
151. He, Y., Zhang, L., Wang, W., Wu, Y., Lin, H., Zhao, L., Weng, W., Wand, H., Fan, M., Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation. RSC Adv., 4, 13610, 2014.
152. Wang, C., Wang, G., Zhang, X., Dong, X., Ma, C., Zhang, X., Ma, H., Xue, M., Construction of g-C3N4 and FeWO4 Z-scheme photocatalyst: effect of contact ways on the photocatalytic performance. RSC Adv., 8, 18419–18426, 2018.
153. Lu, D., Wang, H., Zhao, X., Kondammareddy, K.K., Ding, J., Li, C., Fang, P., Highly efficient visible-light-induced photoactivity of Z-Scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustainable Chem. Eng., 5, 2, 1436–1445, 2017.
154. Huang, Z., Sun, Q., Lv, K., Zhang, Z., Li, M., Li, B., Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photo catalyst: (0 0 1) vs (1 0 1) facets of TiO2. Appl. Catal. B: Environ., 164, 420–427, 2015.
155. Wu, J., Miao, X., Shen, X., Ji, Z., Wang, J., Wang, T., Liu, M., An all-solid-state Z-scheme g-C3N4/Ag/Ag3VO4 photocatalyst with enhanced visible-light photocatalytic performance. Eur. J. Inorg. Chem., 2017, 21, 2845–2853, 2017.
156. Chen, D., Wang, K., Ren, T., Ding, H., Zhu, Y., Synthesis and characterization of the ZnO/mpg-C3N4 heterojunction photocatalyst with enhanced visible light photoactivity. Dalton Trans., 43, 13105–13114, 2014.
157. Sierra, M., Borges, E., Esparza, P., Méndez-Ramos, J., Martín-Gil, J., Martín-Ramos, P., Photocatalytic activities of coke carbon/g-C3N4 and Bi metal/Bi mixed oxides/g-C3N4 nanohybrids for the degradation of pollutants in wastewater. Sci. Technol. Adv. Mat., 17, 1, 659–668, 2016.
158. Li, T., Zhao, L., He, Y., Cai, J., Luo, M., Lin, J., Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B: Environ., 129, 255–263, 2013.
159. Rashidizadeh, A., Ghafuri, H., Rezazadeh, Z., Improved visible-light photo-catalytic activity of g-C3N4/CuWO4 nanocomposite for degradation of methylene blue. Proceedings, 41, 43, 2019.
160. Li, C., Wang, S., Wang, T., Wei, Y., Zhang, P., Gong, J., Monoclinic porous BiVO4 networks decorated by discrete g-C3N4 nano-islands with tunable coverage for highly efficient photocatalysis. Small, 10, 14, 2783–90, 2741, 2014.
161. Li, H., Yu, H., Quan, X., Chen, S., Zhang, Y., Uncovering the key role of the fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4(Metal = Cu, Ag, Au). ACS Appl. Mater. Interfaces, 8, 3, 2111–2119, 2016.
162. Yang, Y., Guo, W., Guo, Y., Zhao, Y., Yuan, X., Guo, Y., Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity. J. Hazard. Mater., 271, 150–159, 2014.
163. Fu, J., Chang, B., Tian, Y., Xi, F., Dong, D., Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A, 1, 3083–3090, 2013.
164. Yang, Y., Guo, Y., Liu, F., Yuan, X., Guo, Y., Zhang, S., Guo, W., Huo, M., Preparation and enhanced