Functionalized Nanomaterials for Catalytic Application. Группа авторов
href="https://www.who.int/water_sanitation_health/publications/jmp-2019-full-report.pdf">https://www.who.int/water_sanitation_health/publications/jmp-2019-full-report.pdf
3. Yadav, S., Asthana, A., Singh, A.K., Chakraborty, R., Sreevidya, S., Susan, Md.A.B.H., Carabineiro, S.A.C., Adsorption of cationic dyes, drugs and metal from aqueous solutions using a polymer composite of magnetic/β-cyclodextrin/activated charcoal/Na alginate: isotherm, kinetics and regeneration studies. J. Hazard. Mater., 409, 124840, 2021.
4. Raghav, S., Painuli, R., Kumar, D. et al., Threats to water: issues and challenges related to ground water and drinking water, in: A New Generation Material Graphene: Applications in Water Technology, M. Naushad (Ed.), pp. 1–19, Springer, Cham, 2019.
5. Aashima, Mehta, S.K., Impact of functionalized nanomaterials towards the environmental remediation: challenges and future needs, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 505–524, Elsevier, Netherlands, Amsterdam, 2020.
6. Singh, S.B., Hussain, C.M. et al., Functionalized nanographene for catalysis, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 111–129, Elsevier, Netherlands, Amsterdam, 2020.
7. Yadav, S., Asthana, A., Chakraborty, R., Jain, B., Singh, A.K., Carabineiro, S.A.C., Susan, Md.A.B.H., Cationic dye removal using novel magnetic/activated charcoal/β-cyclodextrin/alginate polymer nanocomposite. Nanomaterials, 10, 170, 2020.
8. Chakraborty, R., Verma, R., Asthana, A., Vidya., S., Singh, A.K., Adsorption of hazardous chromium (VI) ions from aqueous solutions using modified sawdust: kinetics, isotherm and thermodynamic modelling. Int. J. Environ. An. Chem., 1–18, 2019.
9. Chaudhary, S., Sharma, P., Chauhan, P., Kumar, R., Umar, A., Functionalized nanomaterials: a new avenue for mitigating environmental problems. Int. J. Environ. Sci. Te., 16, 5331–5358, 2019.
10. Theresa, M., Pendergast, M., Hoek, E.M.V., A review of water treatment membrane nanotechnologies. Energy. Environ. Sci., 4, 1946–1971, 2011.
11. Taghipour, S., Hosseini, S.M., Ataie-Ashtiani, B., Engineering nanomaterials for water and wastewater treatment: review of classifications, properties and applications. New. J. Chem., 43, 7902–7927, 1-18, 2019.
12. Sahoo, S.K., Hota, G. et al., Functionalization of graphene oxide with metal oxide nanomaterials: synthesis and applications for the removal of inorganic, toxic, environmental pollutants from water, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 299–326, Elsevier, Netherlands, Amsterdam, 2020.
13. Yadav, S., Asthana, A., Singh, A.K., Chakraborty, R., SreeVidya, S., Singh, A., Carabineiro, S.A.C., Methionine-functionalized graphene oxide/sodium alginate bio-polymer nanocomposite hydrogel beads: synthesis, isotherm and kinetic studies for an adsorptive removal of fluoroquinolone antibiotics. Nanomaterials, 11, 568, 2021.
14. Nayak, L., Rahaman, M., Giri, R. et al., Surface modification/functionalization of carbon materials by different techniques: an overview, in: Carbon-Containing Polymer Composites, M. Rahaman, D. Khastgir, A. Aldalbahi (Eds.), pp. 65–98, Springer Series on Polymer and Composite Materials, Springer, Singapore, 2019.
15. Kumari, P., Kumar, S., Singhal, A. et al., Magnetic nanoparticle-based nanocontainers for water treatment, in: Smart Nanocontainers, P.N. Tri, T.-O. Do, T.A. Nguyen (Eds.), pp. 487–498, Elsevier, Science, Amsterdam, 2020.
16. Haque, F., Daeneke, T., Kalantar-zadeh, K., Ou, J.Z., Two-Dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett., 10, 2, 23, 2018.
17. Rani, M., Shanker, U. et al., Remediation of organic pollutants by potential functionalized nanomaterials, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 327–398, Elsevier, Netherlands, Amsterdam, 2020.
18. Parvin, F., Rikta, S.Y., Shafi, M., Tareq, S.M., Application of nanomaterials for the removal of heavy metal from wastewater, in: Nanotechnology in Water and Wastewater Treatment: Theory and Applications, A. Ahsan and A.F. Ismail (Eds.), pp. 137–157, Elsevier, Netherlands, Amsterdam, 2019.
19. Liu, J., Feng, X., Fryxell, G.E., Wang, L.-Q., Kim, A.Y., Gong, M., Hybrid mesoporous materials with functionalized monolayers. Chem. Eng. Technol., 21, 1, 97–100, 1998.
20. Darwish, M., Mohammadi, A. et al., Functionalized nanomaterial for environmental techniques, in: Nanotechnology in Environmental Science, C.M. Hussain and A.K. Mishra (Eds.), pp. 315–349, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (Germany), 2018.
21. Chong, W.-C., Ko, C.-H., Lau, W.-J. et al., Mixed-matrix membranes incorporated with functionalized nanomaterials for water applications, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 15–51, Elsevier, Netherlands, Amsterdam, 2020.
22. Olatunde, O.C., Onwudiwe, D.C. et al., Copper-based ternary metal sulfide nanocrystals embedded in graphene oxide as photocatalyst in water treatment, in: Nanotechnology in the Beverage Industry: Fundamentals and Applications, A. Amrane, S. Rajendran, T.A. Nguyen, A.A. Assadi, A. Sharoba (Eds.), pp. 51–133, Elsevier, Netherlands, Amsterdam, 2020.
23. Nnaji, C.O., Jeevanandam, J., Chan, Y.S., Danquah, M.K., Pan, S., Barhoum, A. et al., Engineered nanomaterials for wastewater treatment: current and future trends, in: Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization, A.S.H. Makhlouf and A. Barhoum (Eds.), pp. 129–168, Elsevier, Netherlands, Amsterdam, 2018.
24. Riaz, R., Ali, M., Maiyalagan, T., Arbab, A.A., Anjum, A.S., Lee, S., Ko, M.J., Jeong, S.H., Activated charcoal and reduced graphene sheets composite structure for highly electrocatalytically active counter electrode material and water treatment. Int. J. Hydrogen Energ., 45, 13, 7751–7763, 2020.
25. Liu, G., Wang, S., Gondal, M.A., Shen, K., Xu, Q., Enhanced visible light photocatalytic performance of G-C3N4 photocatalysts Co-doped with gold and sulfur for degradation of persistent pollutant (Rhodamine B). J. Nanosci. Nanotechnol., 19, 2, 713–720, 2019.
26. Feng, Y., Yang, L., Liu, J., Logan, B., Electrochemical technologies for waste-water treatment and resource reclamation. Environ. Sci.: Water Res. Technol., 2, 800–831, 2016.
27. Pouran, S.R., Raman, A.A.A., Daud, W.M.A.W., Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J. Clean. Prod., 64, 24–35, 2014.
28. Zhang, X., Li, Z., Deng, Z., Pan, B. et al., Porous nanocomposites for water treatment: past, present, and future, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 479–503, Elsevier, Netherlands, Amsterdam, 2020.
29. Xiao, J., Xie, Y., Cao, H., Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere, 121, 1–17, 2015.
30. Nazarabad, M.K., Goharshadi, E.K., Mahdizadeh, S.J., Efficient photoelectrocatalytic water oxidation by palladium doped g-C3N4 electrodeposited thin film. J. Phys. Chem. C., 123, 43, 26106–26115, 2019.
31. Lin, Y., Cao, Y., Yao, Q., Chai, O.J.H., Xie, J., Engineering noble metal nanomaterials for pollutant decomposition. Ind. Eng. Chem. Res., 59, 47, 20561–20581, 2020.
32. Divyapriya, G. and Nidheesh, P.N., Importance of graphene in the electro-Fenton process. ACS Omega, 5, 10, 4725–4732, 2020.
33. Chen, Z., Liu, Y., Wei, W., Ni, B.-J., Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environ. Sci.: Nano, 6, 2332– 2366, 2019.
34. Mishra, D., Srivastava, M. et al., Low-dimensional nanomaterials for the photocatalytic degradation of organic pollutants, in: Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants: