Transporters and Drug-Metabolizing Enzymes in Drug Toxicity. Albert P. Li
Yimer G, Amogne W, Habtewold A, Makonnen E, Ueda N, Suda A, et al. High plasma efavirenz level and CYP2B6*6 are associated with efavirenz‐based HAART‐induced liver injury in the treatment of naïve HIV patients from Ethiopia: a prospective cohort study. The Pharmacogenomics Journal 2012; 12(6): 499–506.
49 49 Markova SM, De Marco T, Bendjilali N, Kobashigawa EA, Mefford J, Sodhi J, et al. Association of CYP2C9*2 with bosentan‐induced liver injury. Clinical Pharmacology & Therapeutics 2013; 94(6): 678–86.
50 50 Seyfarth H‐J, Favreau N, Tennert C, Ruffert C, Halank M, Wirtz H, et al. Genetic susceptibility to hepatoxicity due to bosentan treatment in pulmonary hypertension. Annals of Hepatology 2014; 13(6): 803–9.
51 51 Lee, SW, Chung, L, Huang, HH, Chuang, TY, Liou, YH, and Wu, L. NAT2 and CYP2E1 polymorphisms and susceptibility to first‐line anti‐tuberculosis drug‐induced hepatitis. The International Journal of Tuberculosis and Lung Disease 2010; 14: 622–626.
52 52 Azuma J, Ohno M, Kubota R, Yokota S, Nagai T, Tsuyuguchi K, et al. NAT2 genotype guided regimen reduces isoniazid‐induced liver injury and early treatment failure in the 6‐month four‐drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics‐based therapy. European Journal of Clinical Pharmacology 2013; 69(5): 1091–101.
53 53 Cho H‐J, Koh W‐J, Ryu Y‐J, Ki C‐S, Nam M‐H, Kim J‐W, et al. Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug‐induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis (Edinburgh, Scotland) 2007; 87(6): 551–6.
54 54 Acuña G, Foernzler D, Leong D, Rabbia M, Smit R, Dorflinger E, et al. Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity. The Pharmacogenomics Journal 2002; 2(5): 327–34.
55 55 Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP. Genetic susceptibility to diclofenac‐induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 2007; 132(1): 272–81.
56 56 Lazarska KE, Dekker SJ, Vermeulen NPE, Commandeur JNM. Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism. Toxicology Letters 2018; 284: 70–8.
57 57 Watanabe I, Tomita A, Shimizu M, Sugawara M, Yasumo H, Koishi R, et al. A study to survey susceptible genetic factors responsible for troglitazone‐associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clinical Pharmacology & Therapeutics 2003; 73(5): 435–55.
58 58 Ritchie MD, Haas DW, Motsinger AA, Donahue JP, Erdem H, Raffanti S, et al. Drug transporter and metabolizing enzyme gene variants and nonnucleoside reverse‐transcriptase inhibitor hepatotoxicity. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 2006; 43(6): 779–82.
59 59 Haas DW, Bartlett JA, Andersen JW, Sanne I, Wilkinson GR, Hinkle J, et al. Pharmacogenetics of nevirapine‐associated hepatotoxicity: an Adult AIDS Clinical Trials Group collaboration. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 2006; 43(6): 783–6.
60 60 Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug‐induced liver injury. Pharmacogenetics & Genomics 2007; 17(1): 47–60.
61 61 Cao K, Ren G, Lu C, Wang Y, Tan Y, Zhou J, et al. ABCC2 c.‐24 C> T single‐nucleotide polymorphism was associated with the pharmacokinetic variability of deferasirox in Chinese subjects. European Journal of Clinical Pharmacology 2020; 76(1): 51–9.
62 62 Zanger UM, Klein K, Thomas M, Rieger JK, Tremmel R, Kandel BA, et al. Genetics, epigenetics, and regulation of drug‐metabolizing cytochrome p450 enzymes. Clinical Pharmacology and Therapeutics 2014; 95(3): 258–61.
63 63 Hirota T, Ieiri I, Takane H, Maegawa S, Hosokawa M, Kobayashi K, et al. Allelic expression imbalance of the human CYP3A4 gene and individual phenotypic status. Human Molecular Genetics 2004; 13(23): 2959–69.
64 64 Neuvonen PJ, Kantola T, Kivistö KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clinical Pharmacology and Therapeutics 1998; 63(3): 332–41.
65 65 Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. The Pharmacogenomics Journal 2011; 11(4): 274–86.
66 66 Lamba V, Panetta JC, Strom S, Schuetz EG. Genetic predictors of interindividual variability in hepatic CYP3A4 expression. Journal of Pharmacology and Experimental Therapeutics 2010; 332(3): 1088–99.
67 67 Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nature Genetics 2001; 27(4): 383–91.
68 68 Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T, et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clinical Chemistry 2011; 57 (11): 1574–83.
69 69 Hesselink DA, van Schaik RHN, van der Heiden IP, van der Werf M, Gregoor PJHS, Lindemans J, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR‐1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clinical Pharmacology and Therapeutics 2003; 74(3): 245–54.
70 70 Andrews LM, Li Y, De Winter BCM, Shi Y‐Y, Baan CC, van Gelder T, et al. Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients. Expert Opinion on Drug Metabolism & Toxicology. 2017; 13 (12): 1225–36.
71 71 Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clinical Pharmacokinetics 2010; 49(3): 141–75.
72 72 Birdwell KA, Grady B, Choi L, Xu H, Bian A, Denny JC, et al. The use of a DNA biobank linked to electronic medical records to characterize pharmacogenomic predictors of tacrolimus dose requirement in kidney transplant recipients. Pharmacogenetics and Genomics 2012; 22(1): 32–42.
73 73 Sachse C, Brockmöller J, Bauer S, Roots I. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. American Journal of Human Genetics 1997; 60(2): 284–95.
74 74 Johansson I, Oscarson M, Yue QY, Bertilsson L, Sjöqvist F, Ingelman‐Sundberg M. Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Molecular Pharmacology 1994; 46(3): 452–9.
75 75 Masimirembwa C, Persson I, Bertilsson L, Hasler J, Ingelman‐Sundberg M. A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: association with diminished debrisoquine hydroxylase activity. British Journal of Clinical Pharmacology 1996; 42(6): 713–9.
76 76 Owusu Obeng A, Hamadeh I, Smith M. Review of opioid pharmacogenetics and considerations for pain management. Pharmacotherapy 2017; 37(9): 1105–21.
77 77 Rodieux F, Vutskits L, Posfay‐Barbe KM, Habre W, Piguet V, Desmeules JA, et al. When the safe alternative is not that safe: tramadol prescribing in children. Frontiers in Pharmacology 2018; 9: 227–13.
78 78 Stamer UM, Musshoff F, Kobilay M, Madea B, Hoeft A, Stuber F. Concentrations of tramadol and O‐desmethyltramadol enantiomers in different CYP2D6 genotypes. Clinical Pharmacology and Therapeutics 2007; 82(1): 41–7.
79 79 Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P, et al. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. The New England Journal of Medicine 2004; 351 (27): 2827–31.
80 80 Morgan MY, Reshef R, Shah RR, Oates NS, Smith RL, Sherlock S. Impaired oxidation of debrisoquine in patients with perhexiline liver injury. Gut 1984; 25 (10): 1057–64.
81 81 Barbhaiya RH, Buch AB, Greene DS. Single and multiple dose pharmacokinetics of nefazodone in subjects classified as extensive and poor metabolizers of dextromethorphan. British Journal