Transporters and Drug-Metabolizing Enzymes in Drug Toxicity. Albert P. Li
Ozdemir O, Boran M, Gokce V, Uzun Y, Kocak B, Korkmaz S. A case with severe rhabdomyolysis and renal failure associated with cerivastatin‐gemfibrozil combination therapy‐‐a case report. Angiology 2000; 51(8):695–7.
49 49 Ravnan SL, Locke C, Yee WP, Haase K. Cerivastatin‐induced rhabdomyolysis: 11 case reports. Pharmacotherapy 2002; 22(4):533–7.
50 50 Rodriguez ML, Mora C, Navarro JF. Cerivastatin‐induced rhabdomyolysis. Ann Intern Med 2000; 132(7):598.
51 51 Simpson S. Case reports of rhabdomyolysis associated with cerivastatin therapy. Arch Intern Med 2001; 161 (21):2630–1.
52 52 SoRelle R. Baycol withdrawn from market. Circulation 2001; 104(8):E9015–6.
53 53 Wooltorton E. Bayer pulls cerivastatin (Baycol) from market. CMAJ 2001; 165(5):632.
54 54 Shek A, Ferrill MJ. Statin‐fibrate combination therapy. Ann Pharmacother 2001; 35 (7–8):908–17.
55 55 Kaspera R, Naraharisetti SB, Tamraz B, Sahele T, Cheesman MJ, Kwok PY, et al. Cerivastatin in vitro metabolism by CYP2C8 variants found in patients experiencing rhabdomyolysis. Pharmacogenet Genomics 2010; 20 (10):619–29.
56 56 Muck W. Clinical pharmacokinetics of cerivastatin. Clin Pharmacokinet 2000; 39(2):99–116.
57 57 Wang JS, Neuvonen M, Wen X, Backman JT, Neuvonen PJ. Gemfibrozil inhibits CYP2C8‐mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos 2002; 30 (12):1352–6.
58 58 Shitara Y, Hirano M, Sato H, Sugiyama Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)‐mediated hepatic uptake and CYP2C8‐mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug‐drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 2004; 311(1):228–36.
59 59 Backman JT, Kyrklund C, Neuvonen M, Neuvonen PJ. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin Pharmacol Ther 2002; 72(6):685–91.
60 60 Muck W. Rational assessment of the interaction profile of cerivastatin supports its low propensity for drug interactions. Drugs 1998; 56 Suppl 1:15–23; discussion 33.
61 61 Marciante KD, Durda JP, Heckbert SR, Lumley T, Rice K, McKnight B, et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics 2011; 21(5):280–8.
62 62 Lucas RA, Weathersby BB, Rocco VK, Pepper JM, Butler KL. Rhabdomyolysis associated with cerivastatin: six cases within 3 months at one hospital. Pharmacotherapy 2002; 22(6):771–4.
63 63 Shitara Y, Itoh T, Sato H, Li AP, Sugiyama Y. Inhibition of transporter‐mediated hepatic uptake as a mechanism for drug‐drug interaction between cerivastatin and cyclosporin A. J Pharmacol Exp Ther 2003; 304(2):610–6.
64 64 Yao Y, Toshimoto K, Kim SJ, Yoshikado T, Sugiyama Y. Quantitative analysis of complex drug‐drug interactions between cerivastatin and metabolism/transport inhibitors using physiologically based pharmacokinetic modeling. Drug Metab Dispos 2018; 46(7):924–33.
65 65 Varma MV, Lin J, Bi YA, Kimoto E, Rodrigues AD. Quantitative rationalization of gemfibrozil drug interactions: consideration of transporters‐enzyme interplay and the role of circulating metabolite gemfibrozil 1‐O‐beta‐glucuronide. Drug Metab Dispos 2015; 43(7):1108–18.
66 66 Burdette DE, Sackellares JC. Felbamate pharmacology and use in epilepsy. Clin Neuropharmacol 1994; 17(5):389–402.
67 67 Zupanc ML, Roell Werner R, Schwabe MS, O'Connor SE, Marcuccilli CJ, Hecox KE, et al. Efficacy of felbamate in the treatment of intractable pediatric epilepsy. Pediatr Neurol 2010; 42(6):396–403.
68 68 Heyman E, Levin N, Lahat E, Epstein O, Gandelman‐Marton R. Efficacy and safety of felbamate in children with refractory epilepsy. Eur J Paediatr Neurol 2014; 18(6):658–62.
69 69 Thakkar K, Billa G, Rane J, Chudasama H, Goswami S, Shah R. The rise and fall of felbamate as a treatment for partial epilepsy‐‐aplastic anemia and hepatic failure to blame? Expert Rev Neurother 2015; 15 (12):1373–5.
70 70 Dieckhaus CM, Thompson CD, Roller SG, Macdonald TL. Mechanisms of idiosyncratic drug reactions: the case of felbamate. Chem Biol Interact 2002; 142 (1–2):99–117.
71 71 Pellock JM, Brodie MJ. Felbamate: 1997 update. Epilepsia 1997; 38 (12):1261–4.
72 72 Pennell PB, Ogaily MS, Macdonald RL. Aplastic anemia in a patient receiving felbamate for complex partial seizures. Neurology 1995; 45 (3 Pt 1):456–60.
73 73 Shah YD, Singh K, Friedman D, Devinsky O, Kothare SV. Evaluating the safety and efficacy of felbamate in the context of a black box warning: a single center experience. Epilepsy Behav 2016; 56:50–3.
74 74 Egnell AC, Houston B, Boyer S. in vivo CYP3A4 heteroactivation is a possible mechanism for the drug interaction between felbamate and carbamazepine. J Pharmacol Exp Ther 2003; 305(3):1251–62.
75 75 Glue P, Banfield CR, Perhach JL, Mather GG, Racha JK, Levy RH. Pharmacokinetic interactions with felbamate. in vitro–in vivo correlation. Clin Pharmacokinet 1997; 33(3):214–24.
76 76 Kapetanovic IM, Torchin CD, Strong JM, Yonekawa WD, Lu C, Li AP, et al. Reactivity of atropaldehyde, a felbamate metabolite in human liver tissue in vitro. Chem Biol Interact 2002; 142 (1–2):119–34.
77 77 Kapetanovic IM, Torchin CD, Thompson CD, Miller TA, McNeilly PJ, Macdonald TL, et al. Potentially reactive cyclic carbamate metabolite of the antiepileptic drug felbamate produced by human liver tissue in vitro. Drug Metab Dispos 1998; 26 (11):1089–95.
78 78 Popovic M, Nierkens S, Pieters R, Uetrecht J. Investigating the role of 2‐phenylpropenal in felbamate‐induced idiosyncratic drug reactions. Chem Res Toxicol 2004; 17 (12):1568–76.
79 79 Roller SG, Dieckhaus CM, Santos WL, Sofia RD, Macdonald TL. Interaction between human serum albumin and the felbamate metabolites 4‐Hydroxy‐5‐phenyl‐[1,3]oxazinan‐2‐one and 2‐phenylpropenal. Chem Res Toxicol 2002; 15(6):815–24.
80 80 Thompson CD, Kinter MT, Macdonald TL. Synthesis and in vitro reactivity of 3‐carbamoyl‐2‐phenylpropionaldehyde and 2‐phenylpropenal: putative reactive metabolites of felbamate. Chem Res Toxicol 1996; 9(8):1225–9.
81 81 Leone AM, Kao LM, McMillian MK, Nie AY, Parker JB, Kelley MF, et al. Evaluation of felbamate and other antiepileptic drug toxicity potential based on hepatic protein covalent binding and gene expression. Chem Res Toxicol 2007; 20(4):600–8.
82 82 Potschka H, Fedrowitz M, Loscher W. P‐Glycoprotein‐mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood‐brain barrier: evidence from microdialysis experiments in rats. Neurosci Lett 2002; 327(3):173–6.
83 83 Potschka H, Fedrowitz M, Loscher W. Brain access and anticonvulsant efficacy of carbamazepine, lamotrigine, and felbamate in ABCC2/MRP2‐deficient TR‐ rats. Epilepsia 2003; 44 (12):1479–86.
84 84 Amery KV. Clinical evaluation of the effects of flucloxacillin in skin and soft tissue infections in the Ivory Coast. Pharmatherapeutica 1988; 5(3):193–7.
85 85 Harding JW, Knudsen ET. General practitioners' forum. Flucloxacillin in the treatment of skin and soft‐tissue infections. Practitioner 1970; 205 (230):801–6.
86 86 Lacey RW, Lewis EL. Further evolution of a strain of Staphylococcus aureus in vivo: evidence for significant inactivation of flucloxacillin by penicillinase. J Med Microbiol 1975; 8(2):337–47.
87 87 Brogi G. Experience in pediatrics with a combination of ampicillin and flucloxacillin drops. Minerva Pediatr 1979; 31 (10):813–8.
88 88 Chew R, Woods ML. Flucloxacillin does not achieve therapeutic cerebrospinal fluid levels against meticillin‐sensitive Staphylococcus aureus in adults: a case report and review of the literature. Int J Antimicrob Agents 2016; 47(3):229–31.
89 89 Ritchie SR, Rupali P, Roberts SA, Thomas MG. Flucloxacillin treatment of Staphylococcus aureus meningitis. Eur J Clin Microbiol Infect Dis 2007; 26(7):501–4.
90 90