Using Predictive Analytics to Improve Healthcare Outcomes. Группа авторов
other professions use predictive analytics to learn the predictors of outcomes and then move on to machine learning and forecasting of risk. This became clear at the mathematics conference mentioned in the preface of this book. Dr. Nelson listened to researchers in logistics and mining where they used complex measurement models in simulations to study how changes to the process of work, using existing data, could be understood prior to making actual changes in the work process.
In healthcare, this same technology is available to leaders who are willing to harness the expertise of existing staff members, each possessing unique knowledge in different domains, to form teams capable of working in predictive analytics and machine learning. For example, programmers in most healthcare organizations are typically asked simply to program the data points necessary to track and manage outcomes. What most leaders in healthcare do not realize is if programmers could work closely, for even a short time, with analysts trained in structural and measurement models, many programmers could carry out most of the predictive analytics and machine learning operations that the top payed data scientists do. The challenge with leaving the programmer and analyst alone is that they almost always lack an understanding of the processes of clinical care. If a team of three could work together, a programmer, an analyst, and a clinician who also works in systems (e.g. a clinical leader), they could program their technology to tell the relevant stories of healthcare. This team could design measurement instruments to capture the extent to which a cultural change is taking place and even to predict outcomes.
Dr. Nelson has found that his 11 years as a bedside nurse, his love of using mathematics to tell a story, and his years of work in software development have served him well in “seeing the stories” as he views data. It is these “stories” that make complex measurement models possible. Anything can be measured if its story can be articulated. The challenge is getting people together who can not only hear the story but can then assemble models and use technology to predict what will happen next.
Understanding an Organization's “Personality” Through Data Analysis
Spending time with our data analyst helped us understand many new things. For example, we now realize that collecting data is like interviewing hundreds of people. The interviews are carefully examined in order to understand the significance of the varied responses from people in different areas of care, people from different disciplines, and people from specific demographic groups in the organization. We learned that analyzing data is like carefully listening to what each person is saying. You can hear what individuals and groups are saying, and you can learn something about who is thriving and who is struggling. This can be an enjoyable event, and it can also be stressful when you notice the sometimes vast differences in experience and outcomes, even within the same organization, sometimes even within the same unit. Each organization or unit has an overall culture, almost like a personality, where various behaviors are appreciated and others are tolerated, sometimes to the detriment of everyone involved. “Listening” to the data makes possible the retelling of what was learned about the culture and experience of the people. In the hands of a skilled analyst, data can tell a heart‐felt, and sometimes a heart‐breaking, story.
Data can tell a heart‐felt, and sometimes a heart‐breaking, story.
Having valid data about the effectiveness of any dimensions of a framework of care delivery enables the people closest to the work to engage in action planning, and it also makes it possible to propose predictive analytics studies which would allow people to move beyond real‐time use of the data into forecasting the likely outcomes of proposed changes. Organizational leaders and data managers can work together to tell the story of cultural change, prompted by the implementation of a framework of care, and use data to guide the change in the desired direction.
As you read each chapter in this book, we invite you to imagine that all or part of the story being told is happening in your organization, and how you and your colleagues might use this sort of information as you engage in the hard but joyful work of making your organization the best it can be.
Note
1 1 This new model of pairing and partnering assured the Licensed Vocational Nurse (LVN) and Certified Nursing Assistant (CNA) worked alongside and at the direction of the RN to decide who would perform what tasks. This was a more professional model than just doing tasks.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.