Applied Univariate, Bivariate, and Multivariate Statistics Using Python. Daniel J. Denis
target="_blank" rel="nofollow" href="#ulink_486de383-e640-5e68-b93c-a0028e9f5f98">171
192 172
193 173
194 174
195 175
196 176
197 177
198 178
199 179
200 180
201 181
202 182
203 183
204 184
205 185
206 186
207 187
208 188
209 189
210 190
211 191
212 192
213 193
214 194
215 195
216 196
217 197
218 198
219 199
220 200
221 201
222 202
223 203
224 204
225 205
226 206
227 207
228 208
229 209
230 210
231 211
232 212
233 213
234 214
235 215
236 216
237 217
238 218
239 219
240 220
241 221
242 222
243 223
244 224
245 225
246 226
247 227
248 228
249 229
250 230
251 231
252 232
253 233
254 234
255 235
256 236
257 237
258 238
259 239
260 240
261 241
262 242
263 243
264 244
265 245
266 246
267 247
268 248
269 249
270 250
271 251
272 252
273 253
274 254
275 255
276 256
277 257
278 258
279 259
280 260
281 261
282 262
283 263
284 264
285 265
286 266
287 267
288 268
289 269
290 270
291 271
292 272
293 273
294 274
295 275
296 276
297 277
298 278
Preface
This book is an elementary beginner’s introduction to applied statistics using Python. It for the most part assumes no prior knowledge of statistics or data analysis, though a prior introductory course is desirable. It can be appropriately used in a 16-week course in statistics or data analysis at the advanced undergraduate or beginning graduate level in fields such as psychology, sociology, biology, forestry, education, nursing, chemistry, business, law, and other areas where making sense of data is a priority rather than formal theoretical statistics as one may have in a more specialized program in a statistics department. Mathematics used in the book is minimal and where math is used, every effort has been made to unpack and explain it as clearly as possible. The goal