Nano-Technological Intervention in Agricultural Productivity. Javid A. Parray
K.S. (2013). Carbon nanotubes‐properties and applications: a review. Carbon Lett. 14: 131–144. https://doi.org/10.5714/CL.2013.14.3.131.
13 13 Aqel, A., El‐Nour, K.M.M.A., Ammar, R.A.A., and Al‐Warthan, A. (2012). Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arabian J. Chem. 5: 1–23. https://doi.org/10.1016/j.arabjc.2010.08.022.
14 14 Elliott, J.A., Shibuta, Y., Amara, H. et al. (2013). Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale 5: 6662. https://doi.org/10.1039/c3nr01925j.
15 15 Saeed, K. and Khan, I. (2016). Preparation and characterization of single‐walled carbon nanotube/nylon 6,6 nanocomposites. Instrum Sci. Technol. 44: 435–444. https://doi.org/10.1080/10739149.2015.1127256.
16 16 Ngoy, J.M., Wagner, N., Riboldi, L., and Bolland, O. (2014). A CO2 capture technology using multi‐walled carbon nanotubes with polyaspartamide surfactant. Energy Procedia 63: 2230–2248. https://doi.org/10.1016/j.egypro.2014.11.242.
17 17 Mabena, L.F., Sinha Ray, S., Mhlanga, S.D., and Coville, N.J. (2011). Nitrogen‐doped carbon nanotubes as a metal catalyst support. Appl. Nanosci. 1: 67–77. https://doi.org/10.1007/s13204-011-0013-4.
18 18 Sigmund, W., Yuh, J., Park, H. et al. (2006). Processing and structure relationships in electrospinning of ceramic fiber systems. J. Am. Ceram. Soc. 89: 395–407. https://doi.org/10.1111/j.1551-2916.2005.00807.x.
19 19 Thomas, S., Harshita, B.S.P., Mishra, P., and Talegaonkar, S. (2015). Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr. Pharm. Des. 21: 6165–6188. https://doi.org/10.2174/1381612821666151027153246.
20 20 Ali, S., Khan, I., Khan, S.A. et al. (2017). Electrocatalytic performance of Ni@Pt core‐shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction. J. Electroanal. Chem. 795: 17–25. https://doi.org/10.1016/j.jelechem.2017.04.040.
21 21 Sun, S. (2000). Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 80 (287): 1989–1992. https://doi.org/10.1126/science.287.5460.1989.
22 22 Hisatomi, T., Kubota, J., and Domen, K. (2014). Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43: 7520–7535. https://doi.org/10.1039/C3CS60378D.
23 23 Abouelmagd, S.A., Meng, F., Kim, B.‐K. et al. (2016). Tannic acid‐mediated surface functionalization of polymeric nanoparticles. ACS Biomater. Sci. Eng.: 6b00497. https://doi.org/10.1021/acsbiomaterials.6b004.
24 24 Rawat, M.K., Jain, A., Singh, S. et al. (2011). Studies on binary lipid matrix‐based solid lipid nanoparticles of repaglinide: in vitro and in vivo evaluation. J. Pharm. Sci. 100: 2366–2378. https://doi.org/10.1002/jps.22435.
25 25 Mashaghi, S., Jadidi, T., Koenderink, G., and Mashaghi, A. (2013). Lipid nanotechnology. Int. J. Mol. Sci. 14: 4242–4282. https://doi.org/10.3390/ijms14024242.
26 26 Puri, A., Loomis, K., Smith, B. et al. (2009). Lipid‐based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 26: 523–580.
27 27 Gujrati, M., Malamas, A., Shin, T. et al. (2014). Multifunctional cationic lipid‐based nanoparticles facilitate endosomal escape and reduction‐triggered cytosolic siRNA release. Mol. Pharmaceutics 11: 2734–2744. https://doi.org/10.1021/mp400787s.
28 28 Wang, Y. and Xia, Y. (2004). Bottom‐up and top‐down approaches to the synthesis of monodispersed spherical colloids of low melting‐point metals. Nano Lett. 4: 2047–2050. https://doi.org/10.1021/nl048689j.
29 29 Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chem. 13: 2638. https://doi.org/10.1039/c1gc15386b.
30 30 Bello, S.A., Agunsoye, J.O., and Hassan, S.B. (2015). Synthesis of coconut shell nanoparticles via a top‐down approach: assessment of milling duration on the particle sizes and morphologies of coconut shell nanoparticles. Mater. Lett. https://doi.org/10.1016/j.matlet.2015.07.063.
31 31 Priyadarshana, G., Kottegoda, N., Senaratne, A. et al. (2015). Synthesis of magnetite nanoparticles by top‐down approach from a high purity ore. J. Nanomater.: 1–8. https://doi.org/10.1155/2015/317312.
32 32 Garrigue, P., Delville, M.‐H., Labruge're, C. et al. (2004). Top‐down approach for the preparation of colloidal carbon nanoparticles. Chem. Mater. 16: 2984–2986. https://doi.org/10.1021/cm049685i.
33 33 Zhang, X., Lai, Z., Liu, Z. et al. (2015). A facile and universal top‐down method for preparation of monodisperse transition‐metal dichalcogenide nanodots. Angew. Chem. Int. Ed. 54: 5425–5428. https://doi.org/10.1002/anie.201501071.
34 34 Zhou, Y., Dong, C.K., Han, L. et al. (2016). Top‐down preparation of active cobalt oxide catalyst. ACS Catal. 6: 6699–6703. https://doi.org/10.1021/acscatal.6b02416.
35 35 Mogilevsky, G., Hartman, O., Emmons, E.D. et al. (2014). Bottom‐up synthesis of anatase nanoparticles with graphene domains. ACS Appl. Mater. Interfaces 6: 10638–10648. https://doi.org/10.1021/am502322y.
36 36 Liu, D., Li, C., Zhou, F. et al. (2015). Rapid synthesis of monodisperse Au nanospheres through a laser irradiation‐induced shape conversion, self‐assembly and their electromagnetic coupling SERS enhancement. Sci. Rep. 5: 7686. https://doi.org/10.1038/srep07686.
37 37 Liu, J., Liu, Y., Liu, N. et al. (2015). Metal‐free efficient photocatalyst for stable visible water splitting via a two‐electron pathway. Science 80 (347): 970–974. https://doi.org/10.1126/science.aaa3145.
38 38 Needham, D., Arslanagic, A., Glud, K. et al. (2016). Bottom‐up design of nanoparticles for anti‐cancer diapeutics: “put the drug in the cancer's food”. J. Drug Targeting: 1–21. https://doi.org/10.1080/1061186X.2016.1238092.
39 39 Wang, Y. and Xia, Y. (2004). Bottom‐up and top‐down approaches to synthesizing monodispersed spherical colloids of low melting‐point metals. Nano Lett. 4: 2047–2050. https://doi.org/10.1021/nl048689j.
40 40 Parveen, K., Banse, V., and Ledwani, L. (2016). Green synthesis of nanoparticles: their advantages and disadvantages. Acta Naturae: 20048. https://doi.org/10.1063/1.4945168.
41 41