Fundamentals of Terahertz Devices and Applications. Группа авторов
al. (1998). A terahertz grid frequency doubler. IEEE Transactions on Microwave Theory and Techniques 46 (11): 1976–1981.
30 30 Rebeiz, G., Regehr, W., Rutledge, D. et al. (1987). Submillimeter‐wave antennas an thin membranes. Antennas and Propagation Society International Symposium, 1987, 1194–1197.
31 31 Kominami, M., Pozar, D., and Schaubert, D. (1985). Dipole and slot elements and arrays on semi‐infinite substrates. IEEE Transactions on Antennas and Propagation 33 (6): 600–607.
32 32 Carluccio, G., Albani, M., and Neto, A. (2012). An iterative physical optics algorithm for the analysis and design of dielectric lens antennas. 2012 IEEE International Symposium on Antennas and Propagation and USNC‐URSI National Radio Science Meeting, Chicago, Illinois, USA (8–14 July 2012).
33 33 Alonso‐DelPino, M., Llombart, N., Chattopadhyay, G. et al. (2013). Design guidelines for a terahertz silicon micro‐lens antenna. IEEE Antennas and Wireless Propagation Letters 12: 84–87.
34 34 Neto, A., Maci, S., and De Maagt, P.J.I. (1998). Reflections inside an elliptical dielectric lens antenna. IEE Proceedings – Microwaves, Antennas and Propagation 145 (3): 243–247.
35 35 Gatesman, A.J., Waldman, J., Ji, M. et al. (2000). An anti‐reflection coating for silicon optics at terahertz frequencies. IEEE Microwave and Guided Wave Letters 10 (7): 264–266.
36 36 Nitta, T., Sekiguchi, S., Sekimoto, Y. et al. (2014). Anti‐reflection coating for cryogenic silicon and alumina lenses in millimeter‐wave bands. Journal of Low Temperature Physics 176 (5): 677–683. https://doi.org/10.1007/s10909‐013‐1059‐3.
37 37 Busse, L.E., Florea, C.M., Frantz, J.A. et al. (2014). Anti‐reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers. Optical Materials Express 4 (12): 2504–2515. https://doi.org/10.1364/OME.4.002504.
38 38 Jackson, D.R., Oliner, A.A., and Ip, A. (1993). Leaky‐wave propagation and radiation for a narrow‐beam multiple‐layer dielectric structure. IEEE Transactions on Antennas and Propagation 41 (3): 344–348.
39 39 Lee, Y., Yeo, J., Mittra, R., and Park, W. (2005). Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters. IEEE Transactions on Antennas and Propagation 53 (1): 224–235.
40 40 Guerin, N., Enoch, S., Tayeb, G. et al. (2006). A metallic Fabry‐Perot directive antenna. IEEE Transactions on Antennas and Propagation 54 (1): 220–224.
41 41 Foroozesh, A. and Shafai, L. (2010). Investigation into the effects of the patch‐type FSS superstrate on the high‐gain cavity resonance antenna design. IEEE Transactions on Antennas and Propagation 58 (2): 258–270.
42 42 Sarabandi, K. and Behdad, N. (2007). A frequency selective surface with miniaturized elements. IEEE Transactions on Antennas and Propagation 55 (5): 1239–1245.
43 43 Llombart, N., Neto, A., Gerini, G. et al. (2008). Impact of mutual coupling in leaky wave enhanced imaging arrays. IEEE Transactions on Antennas and Propagation 56 (4): 1201–1206.
44 44 Neto, A., Llombart, N., Baselmans, J.J.A. et al. (2014). Demonstration of the leaky lens antenna at submillimeter wavelengths. IEEE Transactions on Terahertz Science and Technology 4 (1): 26–32.
45 45 Campo, M.A., Blanco, D., Carluccio, G. et al. (2018). Circularly polarized lens antenna for Tbps wireless communications. 2018 48th European Microwave Conference (EuMC), Madrid, 1147–1150.
46 46 Neto, A. and Llombart, N. (2006). Wideband localization of the dominant leaky wave poles in dielectric covered antennas. IEEE Antennas and Wireless Propagation Letters 5: 549–551.
47 47 Llombart, N., Lee, C., Alonso‐delPino, M. et al. (2013). Silicon micromachined lens antenna for THz integrated heterodyne arrays. IEEE Transactions on Terahertz Science and Technology 3 (5): 515–523.
48 48 Alonso‐delPino, M., Jung‐Kubiak, C., Reck, T. et al. (2019). Beam scanning of silicon lens antennas using integrated piezomotors at submillimeter wavelengths. IEEE Transactions on Terahertz Science and Technology 9 (1): 47–54.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.