Biofuel Cells. Группа авторов
world of bioelectrochemical systems. Energy Environ. Sci., 8, 1092–1109, 2015.
33. Schlager, S., Haberbauer, M., Fuchsbauer, A., Hemmelmair, C., et al., Bio-Electrocatalytic Application of Microorganisms for Carbon Dioxide Reduction to Methane. Chemsuschem, 10, 226–233, 2017.
34. Wan, L.L., Li, X. J., Zang, G.L., Wang, X., et al., A solar assisted microbial electrolysis cell for hydrogen production driven by a microbial fuel cell. Rsc Adv., 5, 82276–82281, 2015.
35. Rojas, M.D.A., Mateos, R., Sotres, A., Zaiat, M., et al., Microbial electrosynthesis (MES) from CO2 is resilient to fluctuations in renewable energy supply. Energy Conver. Manage., 177, 272–279, 2018.
36. Tischer, W., Wedekind, F., Immobilized Enzymes: Methods and Applications, in: Biocatalysis—From Discovery to Application, Fessner, W.-D., Archelas, A., Demirjian, D. C., Furstoss, R., et al. (Eds.), pp. 95–126, Springer, Berlin Heidelberg, 1999.
37. Homaei, A.A., Sariri, R., Vianello, F., Stevanato, R., Enzyme immobilization: an update. J. Chem. Biol., 6, 185–205, 2013.
38. Zhang, D.-H., Yuwen, L.-X., Peng, L.-J., Parameters affecting the performance of immobilized enzyme. J. Chem., 2013, 2013.
39. Vasylieva, N., Marinesco, S., Enzyme Immobilization on Microelectrode Biosensors, in: Microelectrode Biosensors, Marinesco, S., Dale, N. (Eds.), pp. 95–114, Humana Press, Totowa, NJ, 2013.
40. Nguyen, H.H., Kim, M., An overview of techniques in enzyme immobilization. Appl. Sci. Convergence Technol., 26, 157–163, 2017.
41. Minteer, S.D., Enzyme Stabilization and Immobilization: Methods and Protocols, Springer New York, 2018.
42. Rincón, R.A., Lau, C., Luckarift, H.R., Garcia, K.E., et al., Enzymatic fuel cells: Integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design. Biosens. Bioelectron., 27, 132–136, 2011.
43. Yu, E.H., Sundmacher, K., Enzyme electrodes for glucose oxidation prepared by electropolymerization of pyrrole. Proc. Safet. Environ. Prot., 85, 489–493, 2007.
44. Bunte, C., Prucker, O., Konig, T., Ruhe, J., Enzyme Containing Redox Polymer Networks for Biosensors or Biofuel Cells: A Photochemical Approach. Langmuir, 26, 6019–6027, 2010.
45. Meredith, S., Xu, S., Meredith, M.T., Minteer, S.D., Hydrophobic Saltmodified Nafion for Enzyme Immobilization and Stabilization. JoVE, e3949, 2012.
46. Virgen-Ortíz, J.J., dos Santos, J.C.S., Berenguer-Murcia, Á., Barbosa, O., et al., Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J. Mater. Chem. B, 5, 7461–7490, 2017.
47. Calvo, E.J., Etchenique, R., Danilowicz, C., Diaz, L., Electrical Communication between Electrodes and Enzymes Mediated by Redox Hydrogels. Anal. Chem., 68, 4186–4193, 1996.
48. Calvo, E.J., Etchenique, R., Pietrasanta, L., Wolosiuk, A., Danilowicz, C., Layer-By-Layer Self-Assembly of Glucose Oxidase and Os(Bpy)2ClPyCH2NH−poly(Allylamine) Bioelectrode. Anal. Chem., 73, 1161–1168, 2001.
49. El Ichi-Ribault, S., Zebda, A., Tingry, S., Petit, M., et al., Performance and stability of chitosan-MWCNTs-laccase biocathode: Effect of MWCNTs surface charges and ionic strength. J.Electroanal. Chem., 799, 26–33, 2017.
50. Rengaraj, S., Mani, V., Kavanagh, P., Rusling, J., Leech, D., A membrane-less enzymatic fuel cell with layer-by-layer assembly of redox polymer and enzyme over graphite electrodes. Chem. Commun., 47, 11861–11863, 2011.
51. Meredith, M.T., Kao, D.-Y., Hickey, D., Schmidtke, D.W., Glatzhofer, D.T., High Current Density Ferrocene-Modified Linear Poly(ethylenimine) Bioanodes and Their Use in Biofuel Cells. J. Electrochem. Soc., 158, B166–B174, 2011.
52. Dunn, B., Lan, E., Design of Biohybrid Structures for Enzyme–Electrode Interfaces, Hybrid Organic.–Inorganic Interfaces, pp. 767–791, John Wiley & Sons, Ltd, 2017.
53. Christwardana, M., Kim, K.J., Kwon, Y., Fabrication of Mediatorless/Membraneless Glucose/Oxygen Based Biofuel Cell using Biocatalysts Including Glucose Oxidase and Laccase Enzymes. Sci. Reports, 6, 30128, 2016.
54. Díaz-González, J.-c. M., Escalona-Villalpando, R.A., Arriaga, L.G., Minteer, S.D., Casanova-Moreno, J.R., Effects of the cross-linker on the performance and stability of enzymatic electrocatalytic films of glucose oxidase and dimethylferrocene-modified linear poly(ethyleneimine). Electrochim. Acta, 337, 135782, 2020.
55. Oztekin, Y., Krikstolaityte, V., Ramanaviciene, A., Yazicigil, Z., Ramanavicius, A., 1,10-Phenanthroline derivatives as mediators for glucose oxidase. Biosens. Bioelectron., 26, 267–270, 2010.
56. MacAodha, D., Ferrer, M.L., Conghaile, P.Ó., Kavanagh, P., Leech, D., Crosslinked redox polymer enzyme electrodes containing carbon nanotubes for high and stable glucose oxidation current. Phys. Chem. Chem. Phys., 14, 14667–14672, 2012.
57. Kobayashi, S., Hiroishi, K., Tokunoh, M., Saegusa, T., Chelating properties of linear and branched poly(ethylenimines). Macromol., 20, 1496–1500, 1987.
58. Chung, Y., Hyun, K.H., Kwon, Y., Fabrication of a biofuel cell improved by the π-conjugated electron pathway effect induced from a new enzyme catalyst employing terephthalaldehyde. Nanoscale, 8, 1161–1168, 2016.
59. Chung, Y., Christwardana, M., Tannia, D.C., Kim, K.J., Kwon, Y., Biocatalyst including porous enzyme cluster composite immobilized by two-step cross-linking and its utilization as enzymatic biofuel cell. J. Power Sources, 360, 172–179, 2017.
60. Castelli, F., Pitarresi, G., Giammona, G., Influence of different parameters on drug release from hydrogel systems to a biomembrane model. Evaluation by differential scanning calorimetry technique. Biomater., 21, 821–833, 2000.
61. Speit, G., Neuss, S., Schütz, P., Fröhler-Keller, M., Schmid, O., The genotoxic potential of glutaraldehyde in mammalian cells in vitro in comparison with formaldehyde. Mutat. Res./Genetic Toxicol. Environ. Mutagen., 649, 146–154, 2008.
62. Vasylieva, N., Barnych, B., Meiller, A., Maucler, C., et al., Covalent enzyme immobilization by poly(ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation. Biosens. Bioelectron., 26, 3993–4000, 2011.
63. Meredith, M.T., Hickey, D.P., Redemann, J.P., Schmidtke, D.W., Glatzhofer, D.T., Effects of ferrocene methylation on ferrocene-modified linear poly(ethylenimine) bioanodes. Electrochim. Acta, 92, 226–235, 2013.
64. Hickey, D.P., Halmes, A.J., Schmidtke, D.W., Glatzhofer, D.T., Electrochemical Characterization of Glucose Bioanodes Based on Tetramethylferrocene-Modified Linear Poly(ethylenimine). Electrochim. Acta, 149, 252–257, 2014.
65. Chen, J., Munje, R., Godman, N.P., Prasad, S., et al., Improved Performance of Glucose Bioanodes Using Composites of (7,6) Single-Walled Carbon Nanotubes and a Ferrocene-LPEI Redox Polymer. Langmuir, 33, 7591–7599, 2017.
66. Conghaile, P.O., Kamireddy, S., MacAodha, D., Kavanagh, P., Leech, D., Mediated glucose enzyme electrodes by cross-linking films of osmium redox complexes and glucose oxidase on electrodes. Anal. Bioanal. Chem., 405, 3807–3812, 2013.
67. Chabert, N., Ali, O.A., Achouak, W., All ecosystems potentially host electrogenic bacteria. Bioelectrochem., 106, 88–96, 2015.
68. Erable, B., Roncato, M.A., Achouak, W., Bergel, A., Sampling Natural Biofilms: A New Route to Build Efficient Microbial Anodes. Environ. Sci. Technol., 43, 3194–3199, 2009.
69. Cercado-Quezada, B., Delia, M.L., Bergel, A., Testing various food-industry wastes for electricity production