Global Drought and Flood. Группа авторов

Global Drought and Flood - Группа авторов


Скачать книгу
Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133(1–4), 69–88.

      143 Nasrollahi, N., Hsu, K., & Sorooshian, S. (2013). An artificial neural network model to reduce false alarms in satellite precipitation products using MODIS and CloudSat observations. Journal of Hydrometeorology, 14(6), 1872–1883.

      144 Njoku, E.G., Jackson, T.J., Lakshmi, V., Chan, T.K., & Nghiem, S.V. (2003). Soil moisture retrieval from AMSR‐E. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 215–229.

      145 Núñez, M., Pfister, S., Roux, P., & Antón, A. (2013). Estimating water consumption of potential natural vegetation on global dry lands: Building an LCA framework for green water flows. Environmental Science and Technology, 47(21), 12258–12265.

      146 Oguntunde, P.G., Abiodun, B.J., & Lischeid, G. (2011). Rainfall trends in Nigeria, 1901–2000. Journal of Hydrology, 411(3–4), 207–218. https://doi.org/10.1016/j.jhydrol.2011.09.037

      147 Olagunju, T.E. (2015). Drought, desertification and the Nigerian environment: A review. Journal of Ecology and the Natural Environment, 7(7), 196–209.

      148 Otkin, J.A., Anderson, M.C., Hain, C., Svoboda, M., Johnson, D., Mueller, R., et al. (2016). Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agricultural and Forest Meteorology, 218, 230–242.

      149 Owe, M., deJeu, R., Walker, J., & Zukor, D.J. (2001). A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Transactions on Geoscience and Remote Sensing, 39(8), 1643–1654.

      150 Paneque, P. (2015). Drought management strategies in Spain. Water, 7(12), 6689–6701. https://doi.org/10.3390/w7126655

      151 Park, S., Im, J., Park, S., & Rhee, J. (2017). Drought monitoring using high resolution soil moisture through multi‐sensor satellite data fusion over the Korean peninsula. Agricultural and Forest Meteorology, 237–238, 257–269. https://doi.org/10.1016/j.agrformet.2017.02.022

      152 Pinzon, J.E., & Tucker, C.J. (2014). A non‐stationary 1981–2012 AVHRR NDVI3g time series. Remote Sensing, 6(8), 6929–6960.

      153 Poumadere, M., Mays, C., Le Mer, S., & Blong, R. (2005). The 2003 heat wave in France: dangerous climate change here and now. Risk Analysis: An International Journal, 25(6), 1483–1494.

      154 Raei, E., Nikoo, M.R., AghaKouchak, A., Mazdiyasni, O., & Sadegh, M., (2018). GHWR, a multi‐method global heatwave and warm‐spell record and toolbox. Nature Scientific Data, 5, 180206.

      155 Rajsekhar, D., Singh, V. P., & Mishra, A. K. (2015). Multivariate drought index: An information theory based approach for integrated drought assessment. Journal of Hydrology, 526, 164–182. https://doi.org/10.1016/j.jhydrol.2014.11.031

      156 Ramírez‐Beltrán, N. D., Salazar, C. M., Castro Sánchez, J. M., & González, J. E. (2019) A satellite algorithm for estimating relative humidity, based on GOES and MODIS satellite data. International Journal of Remote Sensing, 21, 1–23. https://doi.org/10.1080/01431161.2019.1629715

      157 Rhee, J., Im, J., & Carbone, G.J. (2010b). Monitoring agricultural drought for arid and humid regions using multi‐sensor remote sensing data. Remote Sensing of Environment, 114(12), 2875–2887. https://doi.org/10.1016/j.rse.2010.07.005

      158 Rind, D., Goldberg, R., Hansen, J., Rosenzweig, C., & Ruedy, R. (1990). Potential evapotranspiration and the likelihood of future drought. Journal of Geophysical Research: Atmospheres, 95(D7), 9983–10004.

      159 Rodell, M., & Famiglietti, J.S. (2002). The potential for satellite‐based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. Journal of Hydrology, 263(1–4), 245–256.

      160 Rott, H., Yueh, S.H., Cline, D.W., Duguay, C., Essery, R., Haas, C., et al. (2010). Cold regions hydrology high‐resolution observatory for snow and cold land processes. Proceedings of the IEEE, 98(5), 752–765.

      161 Rouse Jr, J., Haas, R.H., Schell, J.A., & Deering, D.W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Satellite‐1 Symposium, Vol. I: Technical Presentations (NASA SP‐351, compiled and edited by S.C. Freden, E.P. Mercanti, M.A. Becker). Washington, DC: NASA

      162 Ryu, J.H., Sohrabi, M., & Acharya, A. (2014). Toward mapping gridded drought indices to evaluate local drought in a rapidly changing global environment. Water Resources Management, 28(11), 3859–3869.

      163 Sadegh, M., Love, C., Farahmand, A., Mehran, A., Tourian, M.J., & AghaKouchak, A. (2017). Multi‐sensor remote sensing of drought from space. In V. Lakshmi (Ed.), Remote Sensing of Hydrological Extremes (pp. 219–247). Springer.

      164 Sadegh, M., Ragno, E., & AghaKouchak, A. (2017). Multivariate copula analysis toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework. Water Resources Research, 53(6), 5166–5183. https://doi.org/10.1002/2016WR020242

      165 Sadegh, M., Moftakhari, H., Gupta, H.V, Ragno, E., Mazdiyasni, O., Sanders, B., et al. (2018). Multi‐hazard scenarios for analysis of compound extreme events. Geophysical Research Letters, 45(11), 5470–5480.

      166 Sadri, S., Wood, E.F., & Pan, M. (2018). Developing a drought‐monitoring index for the contiguous US using SMAP. Hydrology and Earth System Sciences, 22(12), 6611–6626.

      167 Sánchez, N., González‐Zamora, Á., Piles, M., & Martínez‐Fernández, J. (2016). A new Soil Moisture Agricultural Drought Index (SMADI) integrating MODIS and SMOS products: a case of study over the Iberian Peninsula. Remote Sensing, 8(4), 287.

      168 Santi, E., Paloscia, S., Pettinato, S., Brocca, L., Ciabatta, L., & Entekhabi, D. (2018). Integration of microwave data from SMAP and AMSR2 for soil moisture monitoring in Italy. Remote Sensing of Environment, 212, 21–30.

      169 Santos, J.F., Pulido‐Calvo, I., & Portela, M.M. (2010). Spatial and temporal variability of droughts in Portugal. Water Resources Research, 46(3). https://doi.org/10.1029/2009WR008071

      170 Sapiano, M.R.P., & Arkin, P.A. (2009). An intercomparison and validation of high‐resolution satellite precipitation estimates with 3‐hourly gauge data. Journal of Hydrometeorology, 10(1), 149–166.

      171 Save, H., Bettadpur, S., & Tapley, B. D. (2012). Reducing errors in the GRACE gravity solutions using regularization. Journal of Geodesy, 86(9), 695–711.

      172 Scaini, A., Sánchez, N., Vicente‐Serrano, S. M., & Martínez‐Fernández, J. (2015). SMOS‐derived soil moisture anomalies and drought indices: A comparative analysis using in situ measurements. Hydrological Processes, 29(3), 373–383. https://doi.org/10.1002/hyp.10150

      173 Scanlon, B.R., Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48(4). https://doi.org/10.1029/2011WR011312

      174 Seager, R., & Hoerling, M. (2014). Atmosphere and ocean origins of North American droughts. Journal of Climate, 27(12), 4581–4606.

      175 Senay, G. B. (2008). Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm. Algorithms, 1(2), 52–68.

      176 Shafer, B.A., & Dezman, L.E. (1982). Development of a Surface Water Supply Index


Скачать книгу