Simulation and Analysis of Mathematical Methods in Real-Time Engineering Applications. Группа авторов
discussed. Deep learning is widely now applied in many domains to solve NP-hard problems. In edge computing also many NP-hard problems could be solved using a deep learning mechanism. In this chapter, a few DL-based edge computing solutions are discussed. Various offloading mechanism using deep reinforcement learning is presented with associated challenges of offloading. As the second part of the deep learning application, resource allocation in edge computing environments using deep learning mechanisms is also given. Evolutionary-based optimization is another potential solution to solve the multi-objective, multi-constraint optimization problem. A few optimization problems using evolutionary algorithms like ant colony optimization, genetic algorithm, and particle swarm optimization for edge computing are also described.
References
1. Feng, Jingyun, Zhi Liu, Celimuge Wu, and YushengJi. “AVE: Autonomous vehicular edge computing framework with ACO-based scheduling.” IEEE Transactions on Vehicular Technology 66, no. 12 (2017): 10660-10675.
2. “Computation Offloading.” Wikipedia, 9 Jan. 2021, en.wikipedia.org/wiki/Computation_offloading. Accessed 17 Jan. 2021.
3. Feng, Jingyun, Zhi Liu, Celimuge Wu, and YushengJi. “AVE: Autonomous vehicular edge computing framework with ACO-based scheduling.” IEEE Transactions on Vehicular Technology 66, no. 12 (2017): 10660-10675.
4. Misra, Gourav, et al., “Internet of things (iot)–a technological analysis and survey on vision, concepts, challenges, innovation directions, technologies, and applications (an upcoming or future generation computer communication system technology).” American Journal of Electrical and Electronic Engineering 4.1 (2016): 23-32.
5. Lee, In, and Kyoochun Lee. “The Internet of Things (IoT): Applications, investments, and challenges for enterprises.” Business Horizons 58, no. 4 (2015): 431-440.
6. Petrolo, Riccardo, Valeria Loscri, and Nathalie Mitton. “Towards a smart city based on the cloud of things, a survey on the smart city vision and paradigms.” Transactions on Emerging Telecommunications Technologies 28, no. 1 (2017): e2931.
7. M. Caprolu, R. Di Pietro, F. Lombardi and S. Raponi, “Edge Computing Perspectives: Architectures, Technologies, and Open Security Issues,” 2019 IEEE International Conference on Edge Computing (EDGE), Milan, Italy, 2019, pp. 116-123, doi: 10.1109/EDGE.2019.00035.
8. Taleb, Tarik, KonstantinosSamdanis, BadrMada, HannuFlinck, Sunny Dutta, and Dario Sabella. “On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration.” IEEE Communications Surveys & Tutorials 19, no. 3 (2017): 1657-1681.
9. Roman, Rodrigo, et al. “Mobile Edge Computing, Fog et al.: A Survey and Analysis of Security Threats and Challenges.” Future Generation Computer Systems, vol. 78, Jan. 2018, pp. 680–698, 10.1016/j.future.2016.11.009.
10. Hai Lin, Sherali Zeadally, Zhihong Chen, Houda Labiod, Lusheng Wang, 2020. A survey on computation offloading modeling for edge computing. Journal of Networks and Computer Applications. https://doi.org/10.1016/j.jnca.2020.102781.
11. Santos, José, Philip Leroux, Tim Wauters, Bruno Volckaert, and Filip De Turck. “Anomaly detection for smart city applications over 5g low power wide area networks.” In NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1-9. IEEE, 2018.
12. Kumar, K. S., Kumar, T. A., Radhamani, A. S., & Sundaresan, S. (2020). 3 Blockchain Technology. Blockchain Technology: Fundamentals, Applications, and Case Studies, 23.
13. Sittón-Candanedo, Inés & Alonso, Ricardo & García, Óscar & Muñoz, Lilia & Rodríguez, Sara. (2019). Edge Computing, IoT and Social Computing in Smart Energy Scenarios. Sensors. 19. 3353. 10.3390/s19153353.
14. Chemitiganti, Vamsi. “Edge Computing: Challenges and Opportunities.” Medium, 6 June 2019, medium.com/datadriveninvestor/edge-computing-challenges-and-opportunities-9f2dddbda49e. Accessed 16 Jan. 2021.
15. Wikipedia Contributors. “Markov Decision Process.” Wikipedia, Wikimedia Foundation, 20 May 2019, en.wikipedia.org/wiki/Markov_decision_process.
16. Cheng, N., Lyu, F., Quan, W., Zhou, C., He, H., Shi, W., Shen, X., 2019. Space/aerial-assisted computing offloading for IoT applications: a learning-based approach. IEEE J. Sel. Area. Commun. 37, 1117–1129. https://doi.org/10.1109/JSAC.2019.2906789.
17. A. M. Ghosh and K. Grolinger, “Deep Learning: Edge-Cloud Data Analytics for IoT,” 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 2019, pp. 1-7, doi: 10.1109/CCECE.2019.8861806.
18. Adimoolam M., John A., Balamurugan N.M., Ananth Kumar T. (2021) Green ICT Communication, Networking and Data Processing. In: Balusamy B., Chilamkurti N., Kadry S. (eds.) Green Computing in Smart Cities: Simulation and Techniques. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-48141-4_6.
19. Carvalho, Gonçalo, et al. “Computation Offloading in Edge Computing Environments Using Artificial Intelligence Techniques.” Engineering Applications of Artificial Intelligence, vol. 95, 1 Oct. 2020, p. 103840, www.sciencedirect.com/science/article/abs/pii/S0952197620302050,10.1016/j.engappai.2020.103840. Accessed 16 Jan. 2021.
20. Y. Liu, M. Peng, G. Shou, Y. Chen and S. Chen, “Toward Edge Intelligence: Multiaccess Edge Computing for 5G and Internet of Things,” in IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6722-6747, Aug. 2020, doi: 10.1109/JIOT.2020.3004500.
21. “A Brief Introduction to Markov Chains | Markov Chains in Python.” Edureka, 2 July 2019, www.edureka.co/blog/introduction-to-markov-chains/. Accessed 17 Jan. 2021.
22. “Markov Chain.” Wikipedia, 11 Jan. 2021, en.wikipedia.org/wiki/Markov_chain#:~:text=A%20Markov%20chain%20is%20a. Accessed 17 Jan. 2021.
23. “Semi-Markov Process - an Overview | ScienceDirect Topics.” Www.Sciencedirect.com, www.sciencedirect.com/topics/computer-science/semi-markov-process#:~:text=1.1. Accessed 17 Jan. 2021.
24. Wikipedia Contributors. “Markov Decision Process.” Wikipedia, Wikimedia Foundation, 20 May 2019, en.wikipedia.org/wiki/Markov_decision_process.
25. “Hidden Markov Models - An Introduction | QuantStart.” Www.Quantstart.com, www.quantstart.com/articles/hidden-markov-models-an-introduction/. Accessed 17 Jan. 2021.
26. Hai Lin, SheraliZeadally, Zhihong Chen, HoudaLabiod, LushengWang,A survey on computation offloading modeling for edge computing, Journal of Network and Computer Applications, Volume 169, 2020, 102781, ISSN 1084-8045, https://doi.org/10.1016/j.jnca.2020.102781.
27. “Markov Chains Explained Visually.” Explained Visually, setosa.io/ev/markov-chains/.
28. “Markov Renewal Process.” Wikipedia, 15 July 2020, en.wikipedia.org/wiki/Markov_renewal_process. Accessed 19 Jan. 2021.
29. Yick, Jennifer, Biswanath Mukherjee, and DipakGhosal. “Wireless sensor network survey.” Computer Networks 52, no. 12 (2008): 2292-2330.
30. Bhandary, Vikas, Amita Malik, and Sanjay Kumar. “Routing in wireless multimedia sensor networks: a survey of existing protocols and open research issues.” Journal of Engineering 2016