Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов


Скачать книгу
alt="upper F"/>. We write upper E prime equals upper L left-parenthesis upper E comma double-struck upper R right-parenthesis and upper L left-parenthesis upper E right-parenthesis equals upper L left-parenthesis upper E comma upper E right-parenthesis, where double-struck upper R denotes the real line. Next, we present examples, borrowed from [127], of bilinear triples.

      Example 1.21: Let upper X, upper Y, and upper Z denote Banach spaces. The following are BT:

      1 , , , and ;

      2 , , , and ;

      3 , , , and ;

      4 , and .

      Given a BT left-parenthesis upper E comma upper F comma upper G right-parenthesis Subscript script upper B, we define, for every x element-of upper E, a norm

parallel-to x parallel-to equals sup left-brace right-brace colon parallel-to parallel-to parallel-to parallel-to of script upper B script upper B left-parenthesis right-parenthesis comma x comma y colon less-than-or-slanted-equals less-than-or-slanted-equals parallel-to parallel-to parallel-to parallel-to y 1

      and we set upper E Subscript script upper B Baseline equals StartSet x element-of upper E colon parallel-to x parallel-to less-than infinity EndSet. Whenever the space upper E Subscript script upper B is endowed with the norm parallel-to dot parallel-to Subscript script upper B Baseline, we say that the topological BT left-parenthesis upper E Subscript script upper B Baseline comma upper F comma upper G right-parenthesis is associated with the BT left-parenthesis upper E comma upper F comma upper G right-parenthesis.

      Let upper E be a vector space and normal upper Gamma Subscript upper E be a set of seminorms defined on upper E such that p 1 comma ellipsis comma p Subscript m Baseline element-of normal upper Gamma Subscript upper E Baseline implies sup left-bracket p 1 comma ellipsis comma p Subscript m Baseline right-bracket element-of normal upper Gamma Subscript upper E Baseline period Then, normal upper Gamma Subscript upper E defines a topology on upper E, and the sets upper V Subscript p comma epsilon Baseline equals StartSet x element-of upper E colon p left-parenthesis x right-parenthesis less-than epsilon EndSet comma p element-of normal upper Gamma Subscript upper E Baseline comma epsilon greater-than 0 comma form a basis of neighborhoods of 0. The sets x 0 plus upper V Subscript p comma epsilon form a basis of the neighborhood of x 0 element-of upper E. Moreover, when endowed with this topology, upper E is called a locally convex space (see [127], p. 3, 4).

      Example 1.22: Every normed or seminormed space upper E is a locally convex space.

      For other examples of locally convex spaces, we refer to [110].

StartLayout 1st Row 1st Column Blank 2nd Column upper S upper B Subscript d Baseline left-parenthesis alpha right-parenthesis equals upper S upper B Subscript left-bracket a comma b right-bracket comma d Baseline left-parenthesis alpha right-parenthesis equals sup left-brace vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis ti of alpha alpha left-parenthesis right-parenthesis t minus minus i 1 yi colon y Subscript i Baseline element-of upper F comma vertical-bar vertical-bar vertical-bar vertical-bar yi less-than-or-slanted-equals 1 right-brace and 2nd Row 1st Column Blank 2nd Column upper S upper B left-parenthesis alpha right-parenthesis equals upper S upper B Subscript left-bracket a comma b right-bracket Baseline left-parenthesis alpha right-parenthesis equals sup left-brace right-brace colon times times upper S of BBd left-parenthesis right-parenthesis alpha colon element-of element-of dD left-bracket right-bracket comma a comma b period EndLayout

      Then, upper S upper B left-parenthesis alpha right-parenthesis is the script upper B‐variation of alpha on left-bracket a comma b right-bracket. We say that alpha is a function of bounded script upper Bvariation, whenever upper S upper B left-parenthesis alpha right-parenthesis less-than infinity. In this case, we write alpha element-of upper S upper B left-parenthesis left-bracket a comma b right-bracket comma upper E right-parenthesis.

      The following properties are not difficult to prove. See, e.g. [127, 4.1 and 4.2].

      1 (SB1) is a vector space and the mapping is a seminorm.

      2 (SB2)


Скачать книгу