Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов


Скачать книгу
alt="sigma-summation Underscript i equals 1 Overscript n Endscripts gamma Subscript i Baseline x Subscript i Baseline equals left-parenthesis sigma-summation Underscript i equals 1 Overscript n Endscripts gamma Subscript i Baseline right-parenthesis x 0 plus sigma-summation Underscript j equals 1 Overscript n Endscripts left-parenthesis sigma-summation Underscript i equals j Overscript n Endscripts gamma Subscript i Baseline right-parenthesis left-parenthesis x Subscript j Baseline minus x Subscript j minus 1 Baseline right-parenthesis comma n element-of double-struck upper N period"/> StartLayout 1st Row 1st Column upper I less-than-or-slanted-equals 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d left-brace right-brace minus minus times times left-bracket right-bracket minus minus of gamma gamma left-parenthesis right-parenthesis ti of gamma gamma left-parenthesis right-parenthesis t minus minus i 1 of alpha alpha left-parenthesis right-parenthesis xi i integral integral minus minus ti 1 ti times times times d of gamma gamma left-parenthesis right-parenthesis t of alpha alpha left-parenthesis right-parenthesis t vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis a 2nd Row 1st Column Blank 2nd Column plus sigma-summation Underscript j equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals ij vertical-bar vertical-bar d gamma i vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 less-than epsilon vertical-bar vertical-bar f left-parenthesis a right-parenthesis vertical-bar vertical-bar plus epsilon v a r left-parenthesis f right-parenthesis comma EndLayout

      where we applied the Saks–Henstock lemma (Lemma 1.45) to obtain

vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals ij vertical-bar vertical-bar d gamma i equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals ij vertical-bar vertical-bar d left-brace right-brace minus minus times times left-bracket right-bracket minus minus of gamma gamma left-parenthesis right-parenthesis ti of gamma gamma left-parenthesis right-parenthesis t minus minus i 1 of alpha alpha left-parenthesis right-parenthesis xi i integral integral minus minus ti 1 ti times times times d of gamma gamma left-parenthesis right-parenthesis t of alpha alpha left-parenthesis right-parenthesis t less-than-or-slanted-equals epsilon comma

      for every j equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue.

      A proof of the next proposition follows similarly as the proof of Theorem 1.66.

      

      Proposition 1.67: Let be any interval of the real line and , with . Consider functions and of locally bounded variation. Assume that is locally Perron–Stieltjes integrable with respect to , that is, the Perron–Stieltjes integral exists, for every compact interval . Assume, further, that , defined by

beta left-parenthesis t right-parenthesis equals integral Subscript a Superscript t Baseline alpha left-parenthesis s right-parenthesis d v left-parenthesis s right-parenthesis comma t element-of upper J comma

       is also of locally bounded variation. Then, the Perron–Stieltjes integrals and exist and

      (1.11)integral Subscript a Superscript b Baseline d beta left-parenthesis r right-parenthesis f left-parenthesis r right-parenthesis equals integral Subscript a Superscript b Baseline alpha left-parenthesis r right-parenthesis f left-parenthesis r right-parenthesis d v left-parenthesis r right-parenthesis period

      Yet another substitution formula for Perron–Stieltjes integrals, borrowed from [72, Theorem 11], is brought up here and, again, another interesting trick provided by Professor Hönig is used in its proof. Such substitution formula will be used in Chapter 3 in order to guarantee the existence of some Perron–Stieltjes integrals. As a matter of fact, the corollary following Theorem 1.68 will do the job.

      Theorem 1.68: Consider functions , , , that is,

beta left-parenthesis t right-parenthesis equals integral Subscript a Superscript t Baseline alpha left-parenthesis s right-parenthesis d f left-parenthesis s right-parenthesis comma for every t element-of left-bracket a comma b right-bracket

       and assume that . Thus, if and only if , in which case, we have

      (1.12)integral Subscript a Superscript b Baseline gamma left-parenthesis t right-parenthesis alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis equals integral Subscript a Superscript b Baseline gamma left-parenthesis t right-parenthesis d beta left-parenthesis t right-parenthesis period

      Proof. By hypothesis, alpha element-of upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper W right-parenthesis right-parenthesis. Therefore, for every epsilon greater-than 0, there is a gauge delta of left-bracket a comma b right-bracket such that for every delta‐fine d equals left-parenthesis xi Subscript i Baseline comma t Subscript i Baseline right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket, we have

vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d left-brace right-brace minus minus times times of alpha alpha left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis <hr><noindex><a href=Скачать книгу