ChatGPT: Что я такое? Первая книга об ИИ, написанная самим ИИ!. Джон Доу
и изменять под них существующие системы и процессы. Это может вызвать неконтролируемые негативные эффекты, связанные с неравномерным распределением технологий и стать возможной причиной новых социальных проблем.
Вопросы этики и безопасности ИИ-технологий.
ИИ – это набор очень мощных технологий, которые способны принести не только положительные изменения, но и стать причиной возможных проблем: предвзятости и неравенства, конфиденциальности и безопасности, свободы слова и демократических институтов. Кроме этого, возможно использование ИИ людьми в военных и преступных целях.
Поэтому одной из важных проблем является вопрос этики и безопасности ИИ. Возникают вопросы о том, как контролировать и регулировать использование ИИ, чтобы предотвратить специальные злоупотребления людьми и уменьшить возможные негативные последствия от широкого внедрения ИИ для общества.
Чтобы предотвратить и решить эти проблемы сейчас все активнее обсуждается область «AI Alignment» – что значит «выравнивание / сонастроенность ИИ с человеческими целями и ценностями». Работу в этом направлении ведут множество различных компаний, ученых, философов, разработчиков, специалистов по праву и этике.
Возможность достижения Сильного ИИ.
На волне роста популярности общество все чаще слышит о возможности достижения Сильного ИИ (Общего ИИ) и обретения машинами Разума в человеческом смысле. Это может вызвать рост необоснованных ожиданий и последующее разочарование, если ученым и разработчикам ИИ-систем не удастся достигнуть этого уровня и создать по-настоящему интеллектуальные системы.
Хотя прогресс и количество новых внедряемых идей (как технологических улучшений, так и идей из других наук – нейробиологии, когнитивной психологии, лингвистики) идет с очень большой скоростью, многие ученые скептически относятся к возможности построения Сильного ИИ (Общего ИИ). Отчасти это связано с тем, что ученые не могут дать четкого определения и до конца понять принципы работы Разума даже у человека.
Кроме того, некоторые ученые указывают на то, что текущие методы ИИ, такие как Нейронные Сети и Глубокое обучение, являются сильно упрощенной моделью человеческого мозга и имеют ряд ограничений, которые не позволят достичь истинного Общего ИИ (AGI) без существенных изменений данной технологии.
6. Расскажи подробнее про текущие и потенциальные ограничения для глубокого обучения и текущих архитектур нейронных сетей, на которые указывают ученые?
Глубокое обучение и нейронные сети достигли значительного прогресса в решении многих задач, но они имеют ряд ограничений, которые могут препятствовать достижению истинного Общего ИИ (AGI). Вот некоторые из них:
1. Необходимость больших объемов данных: Глубокое обучение обычно требует огромных объемов размеченных данных для обучения. Это может быть проблематично, поскольку разметка