ChatGPT: Что я такое? Первая книга об ИИ, написанная самим ИИ!. Джон Доу

ChatGPT: Что я такое? Первая книга об ИИ, написанная самим ИИ! - Джон Доу


Скачать книгу
электронику и программное обеспечение для создания машин, способных выполнять задачи в физическом мире, сверх областей, уже упомянутых выше.

      7. Машинное обучение (ML) – как основная дисциплина внутри области Искусственного Интеллекта (AI), получившая самое сильное развитие в начале 21 века, применяет статистические методы для самообучения систем на основе данных, позволяя системам совершенствовать выполнение задач без явного программирования человеком. Среди техник Машинного обучения можно найти вероятностные алгоритмы, деревья решений, эволюционные алгоритмы и нейронные сети, каждый из которых применяется в различных областях – от создания систем рекомендаций до диагностики.

      Нейронные сети (Neural Networks) и Глубокое обучение (Deep Learning) в свою очередь стали основной областью уже внутри Машинного Обучения, постепенно заменяя и вытесняя другие подходы и методы. Благодаря высокой точности и эффективности Нейросетей, а также увеличению доступности больших данных и вычислительных ресурсов доступных для их обучения, они стали более повсеместно доступными и применимыми в различных областях человеческой деятельности.

      В области Нейронных сетей тоже можно выделить несколько ключевых направлений, сфокусированных на разных классах задач, которые эти сети позволяют решать.

      – Во-первых, это Автоматизация принятия решений для систем с большим количеством параметров. Сюда можно отнести различные системы рекомендаций, системы для сегментирования клиентов, прогнозную аналитику, автоматизацию процессов.

      – Во-вторых, Компьютерное зрение (CV), концентрирующееся на интерпретации визуальной информации и работе с изображениями и видео.

      – В-третьих, NLP (Обработка естественного языка), упрощающая взаимодействие человека и машины на естественном языке и решающая задачи обработки текстов.

      Внутри области NLP получили развитие Большие Языковые Модели (Large Language Models, LLMS) и Foundational Models. Это мощные нейросетевые модели, обученные на очень больших объемах текстов и содержащие статистические знания о мире и различных специализированных областях. Их можно использовать в качестве базы для создания других продвинутых ИИ-систем, способных решать сложные интеллектуальные задачи в разных областях.

      4. Расскажи про практическое применение ИИ в современном мире? И расскажи подробнее, как уже применяются ИИ-технологии в Интернете и новых веб-проектах?

      Искусственный интеллект сегодня используется во многих областях человеческой деятельности, благодаря своей способности автоматизировать и улучшить решение задач. Ниже приведены несколько примеров:

      1. Здравоохранение: ИИ используется для помощи в диагностике заболеваний, предсказания их развития и подбора подходящего лечения. С помощью анализа больших объемов данных, ИИ может определить шаблоны и корреляции, которые могут быть невидимы для человеческого врача.

      2. Финансы:


Скачать книгу