Нейросети: создание и оптимизация будущего. Джеймс Девис

Нейросети: создание и оптимизация будущего - Джеймс Девис


Скачать книгу
применяется в задачах классификации, где важно оценивать точность вероятностей. Она эффективно оценивает, насколько сильно предсказания отклоняются от истинного класса, придавая больший "вес" уверенным, но ошибочным прогнозам.

      Почему оценка ошибки важна?

      Этап оценки ошибки создаёт основу для всех последующих шагов обучения сети. Поняв, где и насколько она ошибается, сеть может адаптировать свои внутренние параметры (веса), чтобы лучше соответствовать данным. Ошибка на выходном слое служит отправной точкой, с которой сеть начнёт работать, чтобы исправить свои прогнозы.

      2. Вычисление градиента функции потерь по каждому весу

      После оценки ошибки на выходном слое следующим шагом в обратном распространении является вычисление градиентов функции потерь по каждому весу. Этот процесс позволяет определить, как изменение конкретного веса влияет на ошибку на выходе сети. Градиенты направляют обновление весов в сторону минимизации ошибки, указывая, насколько и в каком направлении нужно изменить каждый параметр.

      Как работает вычисление градиентов?

      Для того чтобы понять, как каждый вес в сети влияет на итоговую ошибку, нужно найти частную производную функции потерь по каждому весу. Частная производная показывает, как сильно изменится ошибка, если слегка изменить данный вес, при этом оставив остальные веса неизменными.

      1. Градиент как направление и величина изменения: Градиент каждого веса указывает направление (вниз или вверх) и величину корректировки, которая поможет снизить ошибку. Если ошибка сильно "зависит" от данного веса, его градиент будет большим, что сигнализирует о необходимости более значительных изменений. Если же ошибка изменяется незначительно при изменении веса, то и градиент будет маленьким, показывая, что вес уже близок к нужному значению.

      2. Важность локального влияния весов: На каждом слое сети градиенты зависят от предыдущих и последующих слоев. Чем ближе вес к выходному слою, тем более прямое влияние он оказывает на ошибку. Градиенты, рассчитанные для этих "близких" весов, сразу показывают, как изменить их, чтобы уменьшить ошибку на выходе. Для весов в скрытых слоях нужно учитывать ещё и влияние следующих слоёв.

      Как градиенты направляют корректировку весов?

      Использование градиентов для изменения весов позволяет сети корректировать их оптимальным образом. Эти значения определяют, в каком направлении и насколько сильно следует изменить каждый вес, чтобы привести сеть к более точным предсказаниям. В результате:

      – Сеть "учится" на ошибках: изменяя каждый вес в соответствии с его градиентом, сеть "приближается" к набору значений, который минимизирует ошибку.

      – Процесс итеративный: градиенты рассчитываются снова и снова для каждого набора данных, каждый раз обновляя веса на небольшую величину.

      Таким образом, градиенты играют важную роль в оптимизации, помогая сети "двигаться" в сторону минимизации ошибки через последовательные обновления.

      3. Применение


Скачать книгу