Обыграй дилера: Победная стратегия игры в блэкджек. Эдвард Торп

Обыграй дилера: Победная стратегия игры в блэкджек - Эдвард Торп


Скачать книгу
игры к другой в соответствии с разнообразными методиками, иногда простыми, а иногда весьма замысловатыми. Например, игрок, играющий по системе «малого мартингала»[27], также известной под названием «системы удвоения», может сделать исходную ставку, скажем, размером 1 доллар. Если он проигрывает, в следующий раз он ставит 2 доллара. Затем он ставит 4, 8, 16 долларов и т. д., удваивая ставку до первого выигрыша. После этого процедура повторяется заново, начиная со ставки в доллар. Каждая ставка, сделанная после серии проигрышей, равна сумме всех проигрышей в этой серии плюс один доллар. Выигравшая ставка либо равняется доллару, либо ставке, сделанной после серии проигрышей. Таким образом, каждый выигрыш приносит 1 доллар чистой прибыли, считая с предыдущего выигрыша, и такой игрок выигрывает по доллару через каждые несколько ставок. Однако у этой системы есть один недостаток. Казино всегда ограничивает размер максимальной ставки. Предположим, что такой предел равен 500 долларам, а мы начинаем играть со ставки 1 доллар. В случае серии из девяти проигрышей (на ставках 1, 2, 4, 8, 16, 32, 64, 128 и 256 долларов) следующая ставка по «системе удвоения» должна быть равна 512 долларам, что не разрешено правилами.

      На практике оказывается, что такие ограничения максимальных ставок позволяют казино выигрывать тот же процент оборота, которые они выигрывают обычно, даже если игрок использует систему удвоения. Таким образом, система удвоения не дает игроку никакого преимущества. Другие, более сложные системы игры, по-видимому, обладают тем же недостатком. Поэтому неудивительно, что впоследствии было доказано, исходя из математической теории вероятностей, что для большинства распространенных азартных игр невозможно разработать систему ставок, которая хоть как-нибудь изменяла бы долговременное преимущество казино.

      В число игр, для которых это утверждение доказано, входят игры, которые математики относят к категории «процессов с независимыми испытаниями» (к ним относятся, например, крэпс и рулетка[28]). Этот термин означает, что результат каждой игры не испытывает влияния предыдущих результатов и сам не влияет на будущие результаты. Представим себе, например, что мы тасуем карточную колоду и вытягиваем из нее одну карту – пусть это будет четверка пик. Теперь вернем карту в колоду и снова тщательно перетасуем ее. Если мы еще раз вытянем карту, вероятность того, что это снова будет четверка пик, не больше и не меньше, чем вероятность вытянуть любую из оставшейся 51 карты. Как формулирует это обстоятельство расхожая поговорка, «у карт нет памяти».

Значение взаимозависимости опытов в блэкджеке

      В отличие от предыдущего случая в блэкджеке, в который играют в казино, у карт есть память! То, что происходит в одном туре игры, может повлиять как на следующий, так и на дальнейшие ее туры. Поэтому блэкджек можно исключить из области применимости математических рассуждений, которые исключают существование выгодных игровых систем для игр с независимыми опытами.

      Предположим, например, что


Скачать книгу

<p>27</p>

В русском языке применительно к названию этой игровой системы также используется английское произношение, «мартингейл». Однако, хотя точная этимология этого слова неизвестна, оно происходит из французского языка, и сохранение французского чтения представляется более логичным. Интересно отметить, что в других значениях – в качестве названий вида стохастических процессов в теории вероятностей и элемента конской упряжи – по-русски используется только вариант «мартингал». (Примеч. перев.)

<p>28</p>

В предположении «идеальных» игральных костей и «идеальной» рулетки. Интересный отчет о попытках переиграть смещенную рулетку можно найти в работе Вильсона [80].