Side-Lights on Astronomy and Kindred Fields of Popular Science. Simon Newcomb

Side-Lights on Astronomy and Kindred Fields of Popular Science - Simon Newcomb


Скачать книгу
than those which do. Dark stars revolve around bright ones in an infinite variety of ways, and complex systems of bodies, the members of which powerfully attract each other, are the rule throughout the universe. Moreover, we can set no limit to the possible number of dark or invisible stars that may be flying through the celestial spaces. While, therefore, we cannot regard the theory of collision as established, it seems to be the only one yet put forth which can lay any claim to a scientific basis. What gives most color to it is the extreme suddenness with which the new stars, so far as has yet been observed, invariably blaze forth. In almost every case it has been only two or three days from the time that the existence of such an object became known until it had attained nearly its full brightness. In fact, it would seem that in the case of the star in Perseus, as in most other cases, the greater part of the outburst took place within the space of twenty-four hours. This suddenness and rapidity is exactly what would be the result of a collision.

      The most inexplicable feature of all is the rapid formation of a nebula around this star. In the first photographs of the latter, the appearance presented is simply that of an ordinary star. But, in the course of three or four months, the delicate photographs taken at the Lick Observatory showed that a nebulous light surrounded the star, and was continually growing larger and larger. At first sight, there would seem to be nothing extraordinary in this fact. Great masses of intensely hot vapor, shining by their own light, would naturally be thrown out from the star. Or, if the star had originally been surrounded by a very rare nebulous fog or vapor, the latter would be seen by the brilliant light emitted by the star. On this was based an explanation offered by Kapteyn, which at first seemed very plausible. It was that the sudden wave of light thrown out by the star when it burst forth caused the illumination of the surrounding vapor, which, though really at rest, would seem to expand with the velocity of light, as the illumination reached more and more distant regions of the nebula. This result may be made the subject of exact calculation. The velocity of light is such as would make a circuit of the earth more than seven times in a second. It would, therefore, go out from the star at the rate of a million of miles in between five and six seconds. In the lapse of one of our days, the light would have filled a sphere around the star having a diameter more than one hundred and fifty times the distance of the sun from the earth, and more than five times the dimensions of the whole solar system. Continuing its course and enlarging its sphere day after day, the sight presented to us would have been that of a gradually expanding nebulous mass—a globe of faint light continually increasing in size with the velocity of light.

      The first sentiment the reader will feel on this subject is doubtless one of surprise that the distance of the star should be so great as this explanation would imply. Six months after the explosion, the globe of light, as actually photographed, was of a size which would have been visible to the naked eye only as a very minute object in the sky. Is it possible that this minute object could have been thousands of times the dimensions of our solar system?

      To see how the question stands from this point of view, we must have some idea of the possible distance of the new star. To gain this idea, we must find some way of estimating distances in the universe. For a reason which will soon be apparent, we begin with the greatest structure which nature offers to the view of man. We all know that the Milky Way is formed of countless stars, too minute to be individually visible to the naked eye. The more powerful the telescope through which we sweep the heavens, the greater the number of the stars that can be seen in it. With the powerful instruments which are now in use for photographing the sky, the number of stars brought to light must rise into the hundreds of millions, and the greater part of these belong to the Milky Way. The smaller the stars we count, the greater their comparative number in the region of the Milky Way. Of the stars visible through the telescope, more than one-half are found in the Milky Way, which may be regarded as a girdle spanning the entire visible universe.

      Of the diameter of this girdle we can say, almost with certainty, that it must be more than a thousand times as great as the distance of the nearest fixed star from us, and is probably two or three times greater. According to the best judgment we can form, our solar system is situate near the central region of the girdle, so that the latter must be distant from us by half its diameter. It follows that if we can imagine a gigantic pair of compasses, of which the points extend from us to Alpha Centauri, the nearest star, we should have to measure out at least five hundred spaces with the compass, and perhaps even one thousand or more, to reach the region of the Milky Way.

      With this we have to connect another curious fact. Of eighteen new stars which have been observed to blaze forth during the last four hundred years, all are in the region of the Milky Way. This seems to show that, as a rule, they belong to the Milky Way. Accepting this very plausible conclusion, the new star in Perseus must have been more than five hundred times as far as the nearest fixed star. We know that it takes light four years to reach us from Alpha Centauri. It follows that the new star was at a distance through which light would require more than two thousand years to travel, and quite likely a time two or three times this. It requires only the most elementary ideas of geometry to see that if we suppose a ray of light to shoot from a star at such a distance in a direction perpendicular to the line of sight from us to the star, we can compute how fast the ray would seem to us to travel. Granting the distance to be only two thousand light years, the apparent size of the sphere around the star which the light would fill at the end of one year after the explosion would be that of a coin seen at a distance of two thousand times its radius, or one thousand times its diameter—say, a five-cent piece at the distance of sixty feet. But, as a matter of fact, the nebulous illumination expanded with a velocity from ten to twenty times as great as this.

      The idea that the nebulosity around the new star was formed by the illumination caused by the light of the explosion spreading out on all sides therefore fails to satisfy us, not because the expansion of the nebula seemed to be so slow, but because it was many times as swift as the speed of light. Another reason for believing that it was not a mere wave of light is offered by the fact that it did not take place regularly in every direction from the star, but seemed to shoot off at various angles.

      Up to the present time, the speed of light has been to science, as well as to the intelligence of our race, almost a symbol of the greatest of possible speeds. The more carefully we reflect on the case, the more clearly we shall see the difficulty in supposing any agency to travel at the rate of the seeming emanations from the new star in Perseus.

      As the emanation is seen spreading day after day, the reader may inquire whether this is not an appearance due to some other cause than the mere motion of light. May not an explosion taking place in the centre of a star produce an effect which shall travel yet faster than light? We can only reply that no such agency is known to science.

      But is there really anything intrinsically improbable in an agency travelling with a speed many times that of light? In considering that there is, we may fall into an error very much like that into which our predecessors fell in thinking it entirely out of the range of reasonable probability that the stars should be placed at such distances as we now know them to be.

      Accepting it as a fact that agencies do exist which travel from sun to planet and from star to star with a speed which beggars all our previous ideas, the first question that arises is that of their nature and mode of action. This question is, up to the present time, one which we do not see any way of completely answering. The first difficulty is that we have no evidence of these agents except that afforded by their action. We see that the sun goes through a regular course of pulsations, each requiring eleven years for completion; and we see that, simultaneously with these, the earth's magnetism goes through a similar course of pulsations. The connection of the two, therefore, seems absolutely proven. But when we ask by what agency it is possible for the sun to affect the magnetism of the earth, and when we trace the passage of some agent between the two bodies, we find nothing to explain the action. To all appearance, the space between the earth and the sun is a perfect void. That electricity cannot of itself pass through a vacuum seems to be a well-established law of physics. It is true that electromagnetic waves, which are supposed to be of the same nature with those of light, and which are used in wireless telegraphy, do pass through a vacuum and may pass from the sun to the earth. But there is no way of explaining how such waves would either produce or affect the magnetism of the earth.

      The mysterious


Скачать книгу