The Steam Engine Familiarly Explained and Illustrated. Dionysius Lardner

The Steam Engine Familiarly Explained and Illustrated - Dionysius Lardner


Скачать книгу
the steam admitted through R ceases to be condensed, it balances the atmospheric pressure above the piston, and thus permits it to be drawn to the top of the cylinder by the weight of the rod D. This ascent of the piston is also assisted by the circumstance of the steam being somewhat stronger than the atmosphere.

      When the piston has reached the top, the regulating valve r is closed, and the condensing valve H opened, and another descent produced as before, and so the process is continued.

      The manipulation necessary in working this engine was, therefore, the alternate opening and closing of two valves; the regulating and condensing valves. When the piston reached the top of the cylinder, the former was to be closed, and the latter opened; and, on reaching the bottom, the former was to be opened, and the latter closed.

      (42.) From the imperfect attention which even an assiduous attendant could give to the management of these valves, the performance of the engines was very irregular, and the waste of fuel very great, until a boy named Humphrey Potter contrived means of making the engine work its own valves. This contrivance, although made with no other design than the indulgence of an idle disposition, nevertheless constituted a most important step in the progressive improvement of the steam-engine; for by its means, not only the irregularity arising from the negligence of attendants was avoided, but the speed of the engine was doubled.

      Potter attached strings to the levers which worked the valves, and carrying these strings to the working beam, fastened them upon it in such a manner that as the beam ascended and descended, it pulled the strings so as to open and close the proper valves with the most perfect regularity and certainty. This contrivance was afterwards much improved by an engineer named Beighton, who attached to the working beam a straight beam called a plug frame, carrying pins which, in the ascent and descent of the beam, struck the levers attached to the valves, and opened and closed them exactly at the proper moment.

      The engine thus improved required no other attendance except to feed the boiler occasionally by the cock T, and to attend the furnace.

       CHAP. IV.

       ENGINE OF JAMES WATT.

       Table of Contents

      Advantages of the Atmospheric Engine over that of Captain Savery. — It contained no new Principle. — Papin's Engine. — James Watt. — Particulars of his Life. — His first conceptions of the means of Economising Heat. — Principle of his projected Improvements.

      (43.) Considered practically, the engine described in the last chapter possessed considerable advantages over that of Savery; and even at the present day this machine is not unfrequently used in districts where fuel is very abundant and cheap, the first cost being considerably less than that of a modern engine. The low pressure of the steam necessary to work it rendered the use of the atmospheric engine perfectly safe; there being only a bursting pressure of about 1lb. per inch, while in Savery's there was a bursting pressure amounting to 30lbs. The temperature of the steam not exceeding 216°, did not weaken or destroy the materials; while Savery's engines required steam raised from water at 267°, which in a short time rendered the engine unable to sustain the pressure.

      The power of Savery's engines was also very limited, both as to the quantity of water raised, and the height to which it was elevated (34.). On the other hand, the atmospheric engine had no other limit than the dimensions of the piston. In estimating the power of these engines, however, we cannot allow the full atmospheric pressure as an effective force. The condensing water being mixed with the condensed steam, forms a quantity of hot water in the bottom of the cylinder, which, not being submitted to the atmospheric pressure (17.), produces a vapour which resists the descent of the piston. In practice we find that an allowance of at least 3lbs. per square inch should be made for the resistance of this vapour, and 1lb. per square inch for friction, &c.; so that the effective force will be found by subtracting these 4lbs. per square inch from the atmospheric pressure; which, if estimated at 15lbs., leaves an effective working power of about 11lbs. per square inch. This, however, is rather above what is commonly obtained.

      Another advantage which this engine has over those of Savery, is the facility with which it might be applied to drive machinery by means of the working beam.

      The merit of this engine as an invention, must be ascribed principally to its mechanism and combinations. We find in it no new principle; the agency of atmospheric pressure acting against a vacuum, or a partial vacuum, was long known. The formation of a vacuum by the condensation of steam had been suggested by Papin and Savery, and carried into practical effect by the latter. The mechanical power derivable from the direct pressure of the elastic force of steam was distinctly pointed out by Lord Worcester, and even prior to his time; the boiler, gauge-pipes, and regulator of the atmospheric engine, were evidently borrowed from Savery's engine. The idea of working a piston in a cylinder by the atmospheric pressure against a vacuum below, was suggested by Otto Guericke, an ingenious German philosopher, the inventor of the air-pump, and subsequently by Papin; and the use of a working beam could not have been unknown. Nevertheless, considerable credit must be acknowledged to be due to Newcomen for the judicious combination of those scattered principles. "The mechanism contrived by him," says Tredgold, "produces all the difference between an efficient and inefficient engine, and should be more highly valued than the fortuitous discovery of a new principle." The rapid condensation of steam by the injection of water, the method of clearing the cylinder of air and water after the stroke, are two contrivances not before in use, and which are quite essential to the effective operation of the engine: these are wholly due to Newcomen and his associates.

       (44.) The patent of Newcomen was granted in 1705; and in 1707, Papin published a work, entitled "A New Method of raising Water by Fire," in which a steam engine is described, which would scarcely merit notice here but for the contests which have arisen upon the claims of different nations for a share in the invention of the steam engine. The publication of this work of Papin was nine years after Savery's patent, with which he acknowledges himself acquainted, and two years after Newcomen's. The following is a description of Papin's steam engine:—

      An oval boiler, A (fig. 11.), is filled to about two thirds of its entire capacity with water, through a valve B in the top, which opens upwards, and is kept down by a lever carrying a sliding weight. The pressure on the valve is regulated by moving the weight to or from B, like the common steelyard. This boiler communicates with a cylinder, C, by a syphon tube furnished with a stopcock at D. The cylinder C has a valve F in the top, closed by a lever and weight similar to B, and a tube with a stopcock G opening into the atmosphere. In this cylinder is placed a hollow copper piston H, which moves freely in it, and floats upon the water. Another tube forms a communication between the bottom of this cylinder and the bottom of a close cylindrical vessel I, called the air-vessel. In this tube is a valve at K, opening upwards; also a pipe terminated in a funnel, and furnished with a valve L, which opens downwards. From the lower part of the air-vessel a tube proceeds, furnished also with a stopcock M, which is continued to whatever height the water is to be raised.

      Water being poured into the funnel, passes through the valve L, which opens downwards; and filling the tube, ascends into the cylinder C, carrying the floating piston H on its surface, and maintains the same level in C which it has in the funnel. In this manner the cylinder C may be filled to the level of the top of the funnel. In this process the cock G should be left open, to allow the air in the cylinder to escape as the water rises.

       Let us now suppose that, a fire being placed beneath the boiler, steam is being produced. On opening the cock D, and closing G, the steam, flowing through the syphon tube into the top of the cylinder, presses down the floating piston, and forces the water into the lower tube. The passage at L being stopped, since L opens downwards, the water forces open the valve K, and passes into the air-vessel I. When the piston H has been forced to the bottom of the cylinder, the cock D is closed, and G is opened, and the steam allowed to escape into the atmosphere. The cylinder is then replenished from the funnel as before; and the cock G being closed, and D opened, the process is repeated,


Скачать книгу