Multivalued Maps And Differential Inclusions: Elements Of Theory And Applications. Valeri Obukhovskii

Multivalued Maps And Differential Inclusions: Elements Of Theory And Applications - Valeri Obukhovskii


Скачать книгу
. Further, if figure then there exists figure and then figure, hence figure.

      The case φ(x) = +∞ can be considered similarly.

figure
be upper semicontinuous (in the single-valued sense). Then the function φ : X
,

figure

      is upper semicontinuous.

      Proof. Fix ε > 0. For each pair xX, y ∈ Φ(x) there exist neighborhoods Uy(x), V(Y) such that x′ ∈ Uy(x), y′ ∈ V(Y) implies f(x′, y′) < f(x, y) + ε. Since the set Φ(x) is compact, there exist a finite number of points y1, . . . , yn such that the neighborhoods V(yi), 1 ≤ in form a cover of Φ(x). If now figure, and figure then from x″ ∈ U0(x), y″ ∈ V(Φ(x)) it follows that

figure

      Let U1(x) be a neighborhood of x such that Φ(U1(x)) ⊂ V(Φ(x)). Then figure yields figure and for each figure we have figure implying figure.

figure

      Proof of Theorem 1.3.29. For every xX, the set

figure

      is nonempty. From Lemmas 1.3.31 and 1.3.32 it follows that the function φ is continuous but then the multimap Γ : XC(Y) is closed (see Example 1.2.27). Now, notice that F = Φ ∩ Γ and apply Theorem 1.3.3.

figure

      Beyond each corner, new directions lie in wait.

      —Stanislaw Jerzy Lec

      Let X, Y be topological spaces, F : XP(Y) a multimap.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/4RCyRXhpZgAATU0AKgAAAAgADAEAAAMAAAABD5QAAAEBAAMA AAABCtcAAAECAAMAAAADAAAAngEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEVAAMAAAABAAMAAAEa AAUAAAABAAAApAEbAAUAAAABAAAArAEoAAMAAAABAAIAAAExAAIAAAAhAAAAtAEyAAIAAAAUAAAA 1odpAAQAAAABAAAA6gAAASIACAAIAAgACvyAAAAnEAAK/IAAACcQQWRvYmUgUGhvdG9zaG9wIDIx LjEgKE1hY2ludG9zaCkAADIwMjA6MDM6MTMgMTA6NDc6MjcAAASQAAAHAAAABDAyMzGgAQADAAAA AQABAACgAgAEAAAAAQAAAcKgAwAEAAAAAQAAApoAAAAAAAAABgEDAAMAAAABAAYAAAEaAAUAAAAB AAABcAEbAAUAAAABAAABeAEoAAMAAAABAAIAAAIBAAQAAAABAAABgAICAAQAAAABAAAPKgAAAAAA AABIAAAAAQAAAEgAAAAB/9j/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwg JC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAB4AFEDASEAAhEB AxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9 AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6 Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ip qrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEB AQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJB UQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RV VldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6 wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDxeivUMwoo AKKACigAooAKKACr+jCxbVIo9S2i1lDRPIxbEJYFRLheW2Eh9v8AFtx3pPYDqtN0jwzc33hh5bu0 EHmmPVv9K2IVEjBHw+GAcKc4xgbchcglms6X4U/4R+znsLiK3vPK8+QNfeaZcQ2+YtqoSjmR5cE4 GUfPBG3O8rj0JP8AhGtCl/sWAXtpbtNeSnUM6tbyNBbgwKP3gIRjzKwwueSMNtJqvbaP4cjl1Ay3 SOsVhI9rvvo8Tt5U22XAAKnesWICd4L5OQpo5pAVbm10JhpfktaxieGO3ud07kpJsWR5yRnYPnCY 2uPlk4yBVx/DOhKZf+JhjbJGI9t/bssjGKJ3hDnC5BeT97naPLA2lnUU+aSAo2/hvTbqx1K8/t+x t/IvVtraB5QzTKWA8zJ2nYAQd2zkA8DGKw9StY7HU7i2huUuYY2xHOmMSKQCDwSB16ZyOhwcimm2 9hFWirAK6Lw3eaNbW3l6rHE4k1O0MoaHe32UCYT7WxlfvJ0IOcEcjImV7aDILh9IWaCGG4Y20ljE LiQWys6zfKzhchehG3IPTPJycuuLbwxHYpJBqOozXBt8mI2yp++JmGD8xCqAIDwWzuboeFXvBoai 2Xgr7RJBHrEyRu0gS6midvLA+1BMqI+QQLQn5cjc2NuDtiin8NW1vbxRus+2C9LvPb/OZJLKMRA8 dp9+3k7euf4ivfYaGRfw6NDZ2L2N3NPcyJN9qjkjwsRDsI

Скачать книгу