Multivalued Maps And Differential Inclusions: Elements Of Theory And Applications. Valeri Obukhovskii
. Further, if
The case φ(x) = +∞ can be considered similarly.
Lemma 1.3.32. Let a multimap Φ : X → K(Y) be upper semicontinuous, a function f : X × Y →
be upper semicontinuous (in the single-valued sense). Then the function φ : X → ,is upper semicontinuous.
Proof. Fix ε > 0. For each pair x ∈ X, y ∈ Φ(x) there exist neighborhoods Uy(x), V(Y) such that x′ ∈ Uy(x), y′ ∈ V(Y) implies f(x′, y′) < f(x, y) + ε. Since the set Φ(x) is compact, there exist a finite number of points y1, . . . , yn such that the neighborhoods V(yi), 1 ≤ i ≤ n form a cover of Φ(x). If now
Let U1(x) be a neighborhood of x such that Φ(U1(x)) ⊂ V(Φ(x)). Then
Proof of Theorem 1.3.29. For every x ∈ X, the set
is nonempty. From Lemmas 1.3.31 and 1.3.32 it follows that the function φ is continuous but then the multimap Γ : X → C(Y) is closed (see Example 1.2.27). Now, notice that F = Φ ∩ Γ and apply Theorem 1.3.3.
1.4Continuous selections and approximations of multivalued maps
Beyond each corner, new directions lie in wait.
—Stanislaw Jerzy Lec
Let X, Y be topological spaces, F : X → P(Y) a multimap.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.