Nanotechnology in Plant Growth Promotion and Protection. Группа авторов
applications and mechanistic aspects. In: Nanobiotechnology Applications in Plant Protection, Nanotechnology in the Life Sciences (eds. K. Abd‐Elsalam and R. Prasad), 87–109. Cham: Springer.
51 Mondal, K.K. and Mani, C. (2012). Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Annals of Microbiology 62 (2): 889–893.
52 Naderi, M.R. and Danesh‐Shahraki, A. (2013). Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences 5: 2229–2232.
53 Nair, P.M.G. (2018). Toxicological impact of carbon nanomaterials on plants. In: Nanotechnology, Food Security and Water Treatment, Environmental Chemistry for a Sustainable World (eds. K. Gothandam, S. Ranjan, N. Dasgupta, et al.), 163–183. Cham: Springer Nature.
54 Paret, M.L., Palmateer, A.J., and Knox, G.W. (2013a). Evaluation of a light‐activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. Horticultural Science 48 (2): 189–192.
55 Paret, M.L., Vallad, G.E., Averett, D.R. et al. (2013b). Photocatalysis: effect of light‐activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103 (3): 228–236.
56 Pradhan, S., Patra, P., Das, S. et al. (2013). Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environmental Science & Technology 47 (22): 13122–13131.
57 Raliya, R., Biswas, P., and Tarafdar, J. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports 5: 22–26.
58 Raliya, R., Saharan, V., Dimkpa, C., and Biswas, P. (2018). Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of Agricultural and Food Chemistry 66 (26): 6487–6503.
59 Rico, C.M., Lee, S.C., Rubenecia, R. et al. (2014). Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry 62 (40): 9669–9675.
60 Rico, C.M., Barrios, A.C., Tan, W. et al. (2015). Physiological and biochemical response of soil‐grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environmental Science and Pollution Research 22 (14): 10551–10558.
61 Rui, M., Ma, C., Hao, Y. et al. (2016). Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science 7: 815.
62 Sadeghi, R., Rodriguez, R.J., Yao, Y., and Kokini, J.L. (2017). Advances in nanotechnology as they pertain to food and agriculture: benefits and risks. Annual Review of Food Science and Technology 8: 467–492.
63 Saharan, V., Sharma, G., Yadav, M. et al. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules 75: 346–353.
64 Saharan, V., Kumaraswamy, R.V., Choudhary, R.C. et al. (2016). Cu‐chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal of Agricultural and Food Chemistry 64 (31): 6148–6155.
65 Salem, N.M., Albanna, L.S., Awwad, A.M. et al. (2016a). Green synthesis of nano‐sized sulfur and its effect on plant growth. Journal of Agricultural Science 8 (1): 188–194.
66 Salem, N.M., Albanna, L.S., Abdeen, A.O. et al. (2016b). Sulfur nanoparticles improves root and shoot growth of tomato. Journal of Agricultural Science 8 (4): 179–185.
67 Sharonova, N.L., Yapparov, A.K., Khisamutdinov, N.S. et al. (2015). Nanostructured water‐phosphorite suspension is a new promising fertilizer. Nanotechnologies in Russia 10: 651–661.
68 Singh, M.D., Chirag, G., Patidar, O.P. et al. (2017). Nano‐fertilizers is a new way to increase nutrients use efficiency in crop production. International Journal of Agriculture Sciences 97: 3831–3833.
69 Song, G., Gao, Y., Wu, H. et al. (2012). Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environmental Toxicology and Chemistry 31: 2147–2152.
70 Subbaiah, L.V., Prasad, T.N.V.K.V., Krishna, T.G. et al. (2016). Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). Journal of Agricultural and Food Chemistry 64: 3778–3788.
71 Taha, R.A., Hassan, M.M., Ibrahim, E.A. et al. (2016). Carbon nanotubes impact on date palm in vitro cultures. Plant Cell, Tissue and Organ Culture 127 (2): 525–534.
72 Tarafdar, J., Raliya, R., Mahawar, H., and Rathore, I. (2014). Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricutlural Research 3: 257–262.
73 Tiwari, M., Sharma, N.C., Fleischmann, P. et al. (2017). Nanotitania exposure causes alterations in physiological, nutritional and stress responses in tomato (Solanum lycopersicum). Frontiers in Plant Science 8: 633.
74 Tripathi, D.K., Singh, S., Singh, S. et al. (2017). An overview on manufactured nano‐particles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry 110: 2–12.
75 Van, S.N., Minh, H.D., and Anh, D.N. (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatalysis and Agricultural Biotechnology 2 (4): 289–294.
76 Wang, W.‐N., Tarafdar, J.C., and Biswas, P. (2013). Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. Journal of Nanoparticle Research 15: 1417.
77 White, J.C. and Gardea‐Torresdey, J. (2018). Achieving food security through the very small. Nature Nanotechnology 13: 627.
78 Worrall, E.A., Hamid, A., Mody, K.T. et al. (2018). Nanotechnology for plant disease management. Agronomy 8: 285.
79 Yassen, A., Abdallah, E., Gaballah, M., and Zaghloul, S. (2017). Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber (Cucumis sativus L.). International Journal of Agricultural Research 12: 130–135.
80 Yousefi, R. and Esna‐Ashari, M. (2017). The effect of micro‐and nanoparticles of silicon on concentration of macro‐and microelements and silicon content of strawberry plant in soilless culture conditions. Journal of Science and Technology of Greenhouse Culture 8 (1): 57–71.
81 Zahra, Z., Arshad, M., Rafique, R. et al. (2015). Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. Journal of Agricultural and Food Chemistry 63: 6876–6882.
82 Zhang, X., Davidson, E.A., Mauzerall, D.L. et al. (2015). Managing nitrogen for sustainable development. Nature 528: 51–59.
83 Zhu, H., Han, J., Xiao, J.Q., and Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring 10: 713–717.
84 Zulfiqar, F., Navarro, M., Ashraf, M. et al. (2019). Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Science 289: 110270.
2 Effects of Titanium Dioxide Nanomaterialson Plants Growth
Martin Šebesta1, Illa Ramakanth2, Ondřej Zvěřina3, Martin Šeda4, Pavel Diviš5, and Marek Kolenčík6,7
1 Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
2 Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies, Nuzvid, India
3 Department of Public Health, Faculty of Medicine, Masaryk University, Brno, Czech Republic
4 Department of Applied Chemistry, Faculty of Agriculture, University of South Bohemia, České Budějovice, Czech