Bases ecológicas para el manejo de plagas. Sergio A. Estay

Bases ecológicas para el manejo de plagas - Sergio A. Estay


Скачать книгу
PLOS ONE, 7(5) e37069.

      Cortes, P. A., Puschel, H., Acuña, P., Bartheld, J. L., y Bozinovic, F. (2016). Thermal ecological physiology of native and invasive frog species: do invaders perform better? Conservation Physiology, 4(1), cow056.

      Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., Jamason, P., y Folland, C. K. (1997). Maximum and minimum temperature trends for the globe. Science, 277(5324), 364-367.

      Estay, S. A., Clavijo-Baquet, S., Lima, M., Bozinovic, F. (2011). Beyond average: an experimental test of temperature variability on the population dynamics of Tribolium confusum. Population Ecology, 53(1), 53-58.

      Estay, S. A., Lima, M., y Bozinovic, F. (2014). The role of temperature variability on insect performance and population dynamics in a warming world. Oikos, 123(2), 131-140.

      Folguera, G., Bastías, D. A. y Bozinovic, F. (2009). Impact of experimental thermal amplitude on ectotherm performance: adaptation to climate change variability? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 154(3), 389-393.

      Foray, V., Gibert, P., y Desouhant, E. (2011). Differential thermal performance curves in response to different habitats in the parasitoid Venturia canescens. Naturwissenschaften, 98, 683-691.

      Gilchrist, G. W., y Huey, R. B. (2001). Parental and developmental temperature effects on the thermal dependence of fitness in Drosophila melanogaster. Evolution, 55, 209-214.

      Hoffmann, A. A. (2010). Physiological climatic limits in Drosophila: patterns and implications. Journal of Experimental Biology, 213, 870-880.

      Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. A., Jess, M., y Williams, S. E. (2012). Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B, 367(1596), 1665-1679.

      Kingsolver, J., Diamond, S., y Gomulkiewicz, R. (2014). Curve thinking: understanding reaction norms and developmental trajectories as traits. En L. Martin, C.K. Ghalambor, H.A., Woods (Eds.) Integrative Organismal Biology (pp. 39-53). New Jersey: John Wiley y Sons, Inc.

      Kingsolver, J.G. (2009). The well-temperatured biologist: (American Society of Naturalists Presidential Address). The American Naturalist, 174(6), 755-768.

      Komoroske, L., Connon, R., Lindberg, J., Cheng, B., Castillo, G., Hasenbein, M., y Fangue, N. (2014). Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conservation Physiology, 2(1): cou008.

      Kozłowski, J. (1993). Measuring fitness in life, history studies. Trends in Ecology and Evolution, 8(3), 84-85.

      Lafferty, K. D. (2009). The ecology of climate change and infectious diseases. Ecology, 90(4), 888-900. Lawson, C.R., Vindenes, Y., Bailey, L., y Pol, M. (2015). Environmental variation and population responses to global change. Ecology letters, 18(7), 724-736.

      Ma, G., Hoffmann, A. A., y Ma, C. S. (2015). Daily temperature extremes play an important role in predicting thermal effects. Journal of Experimental Biology, 218, 2289-2296.

      Meehl, G. A., y Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994-997.

      Mitchell, K. A. y Hoffmann, A. (2009). Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Functional Ecology, 24(3), 694-700.

      Noireau, F., Cortez, M. G. R., Monteiro, F. A., Jansen, A. M., y Torrico, F. (2005). Can wild Triatoma infestans foci in Bolivia jeopardize Chagas disease control efforts? Trends in Parasitology, 21(1), 7-10.

      Nyamukondiwa, C., y Terblanche, J. S. (2009). Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. Journal of Thermal Biology, 34(8), 406-414.

      Paaijmans, K. P., Blanford, S., Bell, A. S., Blanford, J. I., Read, A. F., y Thomas, M. B. (2010). Influence of climate on malaria transmission depends on daily temperature variation. Proceedings of the National Academy of Sciences, 107(34), 15135-15139.

      Paaijmans, K. P., Heinig, R. L., Seliga, R. A., Blanford, J. I., Blanford, S., Murdock, C. C., y Thomas, M. B. (2013). Temperature variation makes ectotherms more sensitive to climate change. Global Change Biology, 19(8), 2373-2380.

      Pachauri, R. K., y Reisinger, A. (2007). Cambio climático 2007: Informe de Síntesis. Contribución de los grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC).

      Pascual, M., y Bouma, M. J. (2009). Do rising temperatures matter. Ecology, 90(4), 906-912. Pásztor, L., Meszena, G., y Kisdi, E. (1996). R0 or r: a matter of taste? Journal of Evolutionary Biology, 9(4), 511-516.

      Pörtner, H.O. (2002). Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132(4), 739-761.

      Puurtinen, M., Elo, M., Jalasvuori, M., Kahilainen, A., Ketola, T., Kotiaho, J. S., Mönkkönen, M., y Pentikäinen, O. T. (2016). Temperature dependent mutational robustness can explain faster molecular evolution at warm temperatures, affecting speciation rate and global patterns of species diversity. Ecography 39(11), 1025-1033.

      Rezende, E.L., Tejedo, M., y Santos, M. (2011). Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. Functional Ecology, 25(1), 111-121.

      Rezende, E. L., Castañeda, L. E., y Santos, M. (2014). Tolerance landscapes in thermal ecology. Functional Ecology, 28 (4), 799-809.

      Ricker, W. E. (1958). Maximum sustained yields from fluctuating environments and mixed stocks. Journal of the Fisheries Board of Canada, 15(5), 991-1006.

      Roff, D. A. (2010). Modeling evolution: an introduction to numerical methods. Oxford: Oxford University Press.

      Saxon, A. D., O’brien, E. K., y Bridle, J. R. (2018). Temperature fluctuations during development reduce male fitness and may limit adaptive potential in tropical rainforest Drosophila. Journal of Evolutionary Biology, 31(3), 405-415.

      Schofield, C. J., Jannin, J., & Salvatella, R. (2006). The future of Chagas disease control. Trends in parasitology, 22(12), 583-588.

      Schulte, P. M., Healy, T. M., y Fangue, N. A. (2011). Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integrative and Comparative Biology, 51(5), 691-702.

      Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., Slotsbo, S., y Huey, R. B. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters, 19(11), 1372-1385.

      Sunday, J. M., Bates, A. E., y Dulvy, N. K. (2010). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B: Biological Sciences, rspb20101295.

      Terblanche, J. S., Hoffmann, A. A., Mitchell, K. A., Rako, L., le Roux, P. C., y Chown, S. L. (2011). Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology, 214(22), 3713-3725.

      Terblanche, J. S., Klok, C. J., Krafsur, E. S., y Chown, S. L. (2006). Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. The American Journal of Tropical Medicine and Hygiene, 74(5), 786-794.

      Terblanche, J. S., Nyamukondiwa, C., y Kleynhans, E. (2010). Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomologia


Скачать книгу