Nonlinear Filters. Simon Haykin

Nonlinear Filters - Simon  Haykin


Скачать книгу
t right-parenthesis bold x left-parenthesis t right-parenthesis period"/>

      (2.44)bold y left-parenthesis t right-parenthesis equals bold upper C left-parenthesis t right-parenthesis bold upper Phi left-parenthesis t comma t 0 right-parenthesis bold x left-parenthesis t 0 right-parenthesis comma

      whose energy is obtained from:

      (2.45)integral Subscript t 0 Superscript t Baseline bold y Superscript upper T Baseline left-parenthesis tau right-parenthesis bold y left-parenthesis tau right-parenthesis normal d tau equals bold x Superscript upper T Baseline left-parenthesis t 0 right-parenthesis left-parenthesis integral Subscript t 0 Superscript t Baseline bold upper Phi Superscript upper T Baseline left-parenthesis tau comma t 0 right-parenthesis bold upper C Superscript upper T Baseline left-parenthesis tau right-parenthesis bold upper C left-parenthesis tau right-parenthesis bold upper Phi left-parenthesis tau comma t 0 right-parenthesis normal d tau right-parenthesis bold x left-parenthesis t 0 right-parenthesis period

      In the aforementioned equation, the matrix in the parentheses is called the continuous‐time observability Gramian matrix:

      (2.46)bold upper W Subscript o Baseline left-parenthesis t 0 comma t right-parenthesis equals integral Subscript t 0 Superscript t Baseline bold upper Phi Superscript upper T Baseline left-parenthesis tau comma t 0 right-parenthesis bold upper C Superscript upper T Baseline left-parenthesis tau right-parenthesis bold upper C left-parenthesis tau right-parenthesis bold upper Phi left-parenthesis tau comma t 0 right-parenthesis normal d tau period

      From its structure, it is obvious that the observability Gramian matrix is symmetric and nonnegative. If we apply a transformation, bold upper T, to the state vector, bold x, such that bold z equals bold upper T bold x, the output energy:

      (2.47)integral Subscript t 0 Superscript t Baseline bold y Superscript upper T Baseline left-parenthesis tau right-parenthesis bold y left-parenthesis tau right-parenthesis normal d tau equals bold x Superscript upper T Baseline left-parenthesis t 0 right-parenthesis bold upper W Subscript o Baseline left-parenthesis t 0 comma t right-parenthesis bold x left-parenthesis t 0 right-parenthesis

      (2.48)integral Subscript t 0 Superscript t Baseline bold y Superscript upper T Baseline left-parenthesis tau right-parenthesis bold y left-parenthesis tau right-parenthesis normal d tau equals bold z Superscript upper T Baseline left-parenthesis t 0 right-parenthesis left-parenthesis bold upper T Superscript negative upper T Baseline bold upper W Subscript o Baseline left-parenthesis t 0 comma t right-parenthesis bold upper T Superscript negative 1 Baseline right-parenthesis bold z left-parenthesis t 0 right-parenthesis period

      2.5.2 Discrete‐Time LTV Systems

      The state‐space model of a discrete‐time LTV system is represented by the following algebraic and difference equations:

      Before proceeding with a discussion on the observability condition, we need to define the discrete‐time state‐transition matrix, bold upper Phi left-parenthesis k comma j right-parenthesis, as the solution of the following difference equation:

      (2.51)bold upper Phi left-parenthesis k plus 1 comma j right-parenthesis equals bold upper A Subscript k Baseline bold upper Phi left-parenthesis k comma j right-parenthesis

      with the initial condition:

      (2.52)bold upper Phi left-parenthesis j comma j right-parenthesis equals bold upper I period

      The reason that bold upper Phi left-parenthesis k comma j right-parenthesis is called the state‐transition matrix is that it describes the dynamic behavior of the following autonomous system (a system with no input):

      (2.53)bold x Subscript k plus 1 Baseline equals bold upper A Subscript k Baseline bold x Subscript k

      with bold x Subscript k being obtained from

      (2.54)bold x Subscript k Baseline equals bold upper Phi left-parenthesis k comma 0 right-parenthesis bold x 0 period

      Following a discussion on energy of the system output similar to the continuous‐time case, we reach the following definition for the discrete‐time observability Gramian matrix:

      (2.55)bold upper W Subscript o Baseline left-parenthesis j comma k right-parenthesis equals sigma-summation Underscript i equals j plus 1 Overscript k Endscripts bold upper Phi Superscript upper T Baseline left-parenthesis i comma j plus 1 right-parenthesis bold upper C Subscript <hr><noindex><a href=Скачать книгу