Nonlinear Filters. Simon Haykin
target="_blank" rel="nofollow" href="#fb3_img_img_b9de217b-8384-5790-a35e-d4ea28dc9fb1.png" alt="bold-script upper L left-parenthesis bold x left-parenthesis t right-parenthesis comma bold u left-parenthesis t right-parenthesis right-parenthesis equals Start 4 By 1 Matrix 1st Row Start 3 By 1 Matrix 1st Row upper L Subscript bold f Superscript 0 Baseline bold g 1 2nd Row vertical-ellipsis 3rd Row upper L Subscript bold f Superscript 0 Baseline bold g Subscript n Sub Subscript y Subscript Baseline EndMatrix 2nd Row Start 3 By 1 Matrix 1st Row upper L Subscript bold f Superscript 1 Baseline bold g 1 2nd Row vertical-ellipsis 3rd Row upper L Subscript bold f Superscript 1 Baseline bold g Subscript n Sub Subscript y Subscript Baseline EndMatrix 3rd Row vertical-ellipsis 4th Row Start 3 By 1 Matrix 1st Row upper L Subscript bold f Superscript n minus 1 Baseline bold g 1 2nd Row vertical-ellipsis 3rd Row upper L Subscript bold f Superscript n minus 1 Baseline bold g Subscript n Sub Subscript y Subscript Baseline EndMatrix EndMatrix period"/>
The system of nonlinear differential equations in (2.67) can be linearized about an initial state
(2.70)
Using Cartan's formula:
(2.71)
we obtain:
(2.72)
Now, we can proceed with deriving the local observability test for nonlinear systems based on the aforementioned linearized system of equations. The nonlinear system in (2.61) and (2.62) is observable at
1 for .
2 The row vectors of are linearly independent.
From the row vectors
If
The nonlinear system in (2.61) and (2.62) can be linearized about
(2.74)