Statistical Approaches for Hidden Variables in Ecology. Nathalie Peyrard

Statistical Approaches for Hidden Variables in Ecology - Nathalie Peyrard


Скачать книгу
of this figure, see www.iste.co.uk/peyrard/ecology.zip

      1.3.5.4. Choosing a number of states

J 2 3 4 5 6 7
AIC 29,044 24,213 18,773 16,624 14,220 19,480
ICL 29,195 24,210 18,887 16,720 14,821 21,003

      From a purely statistical perspective, a 6-state model appears preferable here.

Schematic illustration of the study zone and three trajectories of three different red-footed boobies.

      Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In Second International Symposium on Information Theory, Petrov, B.N., Csaki, F. (eds). Akademiai Kiado, Budapest.

      Bacci, S., Pandolfi, S., Pennoni, F. (2014). A comparison of some criteria for states selection in the latent Markov model for longitudinal data. Advances in Data Analysis and Classification, 8(2), 125–145.

      Biernacki, C., Celeux, G., Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(7), 719–725.

      Calenge, C., Dray, S., Royer-Carenzi, M. (2009). The concept of animals’ trajectories from a data analysis perspective. Ecological Informatics, 4(1), 34–41.

      Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32.

      Dempster, A., Laird, N., Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39(1), 1–38.

      Elwen, S., Meÿer, M.A., Best, P.B., Kotze, P., Thornton, M., Swanson, S. (2006). Range and movements of female Heaviside’s dolphins (Cephalorhynchus heavisidii), as determined by satellite-linked telemetry. Journal of Mammalogy, 87(5), 866–877.

      Freitas, C., Lydersen, C., Fedak, M.A., Kovacs, K.M. (2008). A simple new algorithm to filter marine mammal Argos locations. Marine Mammal Science, 24(2), 315–325.

      Gloaguen, P., Mahévas, S., Rivot, E., Woillez, M., Guitton, J., Vermard, Y., Etienne, M.-P. (2015). An autoregressive model to describe fishing vessel movement and activity. Environmetrics, 26(1), 17–28.

      Guédon, Y. (2007). Exploring the state sequence space for hidden Markov and semi-Markov chains. Computational Statistics & Data Analysis, 51(5), 2379–2409.

      Gurarie, E., Andrews, R.D., Laidre, K.L. (2009). A novel method for identifying behavioural changes in animal movement data. Ecology Letters, 12(5), 395–408.

      Jammalamadaka, S.R. and Sengupta, A. (2001). Topics in Circular Statistics, Volume 5. World Scientific, Singapore.

      Johnson, D.S., London, J.M., Lea, M.-A., Durban, J.W. (2008). Continuous-time correlated random walk model for animal telemetry data. Ecology, 89(5), 1208–1215.

      Lopez, R., Malardé, J.-P., Danès, P., Gaspar, P. (2015). Improving Argos Doppler location using multiple-model smoothing. Animal Biotelemetry, 3(1), 32.

      Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D. (2000). Winbugs – A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10(4), 325–337.

      Michelot, T., Langrock, R., Patterson, T.A. (2016). moveHMM: An R package for the statistical modelling of animal movement data using hidden Markov models. Methods in Ecology and Evolution, 7(11), 1308–1315 [Online]. Available at: https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12578.

      Morales, J.M., Haydon, D.T., Frair, J., Holsinger, K.E., Fryxell, J.M. (2004). Extracting more out of relocation data: Building movement models as mixtures of random walks. Ecology, 85(9), 2436–2445.

      Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., Smouse, P.E. (2008). A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences, 105(49), 19052–19059.

      Patterson, T.A., Thomas, L., Wilcox, C., Ovaskainen, O., Matthiopoulos, J. (2008). State–space models of individual animal movement. Trends in Ecology & Evolution, 23(2), 87–94 [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0169534707003588.

      Patterson, T.A., McConnell, B.J., Fedak, M.A., Bravington, M.V., Hindell, M.A. (2010). Using GPS data to evaluate the accuracy of state–space methods for correction of Argos satellite telemetry error. Ecology, 91(1), 273–285.

      Rabiner, L.R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.

      Tusell, F. (2011). Kalman filtering in R. Journal of Statistical Software, 39(2), 1–27.

      de Valpine, P., Turek, D., Paciorek, C., Anderson-Bergman, C., Temple


Скачать книгу