Thermal Food Engineering Operations. NITIN KUMAR

Thermal Food Engineering Operations - NITIN KUMAR


Скачать книгу

      1. J. P. P. M. Smelt and S. Brul, “Thermal Inactivation of Microorganisms,” Crit. Rev. Food Sci. Nutr., vol. 54, no. 10, pp. 1371–1385, 2014, doi: 10.1080/10408398.2011.637645.

      2. E. Ağçam, A. Akyildiz, and B. Dündar, “Thermal Pasteurization and Microbial Inactivation of Fruit Juices,” in Fruit Juices: Extraction, Composition, Quality and Analysis, 2018.

      3. J. Van Impe et al., “State of the art of nonthermal and thermal processing for inactivation of micro-organisms,” J. Appl. Microbiol., vol. 125, no. 1, pp. 16–35, 2018, doi: 10.1111/jam.13751.

      4. C. Jiménez-Sánchez, J. Lozano-Sánchez, A. Segura-Carretero, and A. Fernández-Gutiérrez, “Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications,” Crit. Rev. Food Sci. Nutr., vol. 57, no. 3, pp. 501–523, 2017, doi: 10.1080/10408398.2013.867828.

      5. X. Li and M. Farid, “A review on recent development in non-conventional food sterilization technologies,” Journal of Food Engineering, vol. 182. 2016, doi: 10.1016/j.jfoodeng.2016.02.026.

      6. P. Mañas and R. Pagán, “Microbial inactivation by new technologies of food preservation,” J. Appl. Microbiol., vol. 98, no. 6, pp. 1387–1399, 2005, doi: 10.1111/j.1365-2672.2005.02561.x.

      7. S. Roohinejad, M. Koubaa, A. S. Sant’Ana, and R. Greiner, “Mechanisms of microbial inactivation by emerging technologies,” in Innovative technologies for food preservation: Inactivation of spoilage and pathogenic microorganisms, 2018.

      8. C. N. Horita, R. C. Baptista, M. Y. R. Caturla, J. M. Lorenzo, F. J. Barba, and A. S. Sant’Ana, “Combining reformulation, active packaging and non-thermal post-packaging decontamination technologies to increase the microbiological quality and safety of cooked ready-to-eat meat products,” Trends in Food Science and Technology, vol. 72. 2018, doi: 10.1016/j.tifs.2017.12.003.

      9. J. B. Portela et al., “Predictive model for inactivation of salmonella in infant formula during microwave heating processing,” Food Control, vol. 104, 2019, doi: 10.1016/j.foodcont.2019.05.006.

      11. B. H. Lado and A. E. Yousef, “Alternative food-preservation technologies: Efficacy and mechanisms,” Microbes and Infection, vol. 4, no. 4. 2002, doi: 10.1016/S1286-4579(02)01557-5.

      12. S. Gaillard, I. Leguerinel, and P. Mafart, “Model for combined effects of temperature, pH and water activity on thermal inactivation of Bacillus cereus spores,” J. Food Sci., vol. 63, no. 5, 1998, doi: 10.1111/j.1365-2621.1998. tb17920.x.

      13. E. L. Dufort, M. R. Etzel, and B. H. Ingham, “Thermal processing parameters to ensure a 5-log Reduction of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in Acidified Tomato-based Foods,” Food Prot. Trends, vol. 37, no. 6, pp. 409–418, 2017.

      14. F. J. Barba, M. Koubaa, L. do Prado-Silva, V. Orlien, and A. de S. Sant’Ana, “Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review,” Trends in Food Science and Technology, vol. 66. 2017, doi: 10.1016/j.tifs.2017.05.011.

      15. R. N. Pereira and A. A. Vicente, “Environmental impact of novel thermal and non-thermal technologies in food processing,” Food Res. Int., vol. 43, no. 7, 2010, doi: 10.1016/j.foodres.2009.09.013.

      16. J. P. Huertas et al., “High heating rates affect greatly the inactivation rate of Escherichia coli,” Front. Microbiol., vol. 7, no. AUG, 2016, doi: 10.3389/ fmicb.2016.01256.

      17. W. L. Nicholson, N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow, “Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments,” Microbiol. Mol. Biol. Rev., vol. 64, no. 3, 2000, doi: 10.1128/ mmbr.64.3.548-572.2000.

      18. L. da Cruz Cabral, V. Fernández Pinto, and A. Patriarca, “Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods,” International Journal of Food Microbiology, vol. 166, no. 1. 2013, doi: 10.1016/j.ijfoodmicro.2013.05.026.

      19. M. C. Pina-Pérez, A. Rivas, A. Martínez, and D. Rodrigo, “Effect of thermal treatment, microwave, and pulsed electric field processing on the antimicrobial potential of açaí (Euterpe oleracea), stevia (Stevia rebaudiana Bertoni), and ginseng (Panax quinquefolius L.) extracts,” Food Control, vol. 90, 2018, doi: 10.1016/j.foodcont.2018.02.022.

      20. A. Rodriguez-Palacios and J. T. LeJeune, “Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile,” Appl. Environ. Microbiol., vol. 77, no. 9, 2011, doi: 10.1128/AEM.01589-10.

      21. Evelyn and F. V. M. Silva, “Resistance of Byssochlamys nivea and Neosartorya fischeri mould spores of different age to high pressure thermal processing and thermosonication,” J. Food Eng., vol. 201, 2017, doi: 10.1016/j. jfoodeng.2017.01.007.

      23. A. Métris, S. M. George, B. M. Mackey, and J. Baranyi, “Modeling the variability of single-cell lag times for Listeria innocua populations after sublethal and lethal heat treatments,” Appl. Environ. Microbiol., vol. 74, no. 22, 2008, doi: 10.1128/AEM.01237-08.

      24. W. Zhao, R. Yang, X. Shen, S. Zhang, and X. Chen, “Lethal and sublethal injury and kinetics of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus in milk by pulsed electric fields,” Food Control, vol. 32, no. 1, 2013, doi: 10.1016/j.foodcont.2012.11.029.

      25. S. K. Wimalaratne and M. M. Farid, “Pressure assisted thermal sterilization,” Food Bioprod. Process., vol. 86, no. 4, 2008, doi: 10.1016/j.fbp.2007.08.001.

      26. P. Loypimai, A. Moongngarm, P. Chottanom, and T. Moontree, “Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant,” Innov. Food Sci. Emerg. Technol., vol. 27, 2015, doi: 10.1016/j.ifset.2014.12.009.

      27. G. Lehrke, L. Hernaez, S. L. Mugliaroli, M. von Staszewski, and R. J. Jagus, “Sensitization of Listeria innocua to inorganic and organic acids by natural antimicrobials,” LWT - Food Sci. Technol., vol. 44, no. 4, 2011, doi: 10.1016/j. lwt.2010.09.016.

      28. Z. Xu et al., “Inactivation effects of non-thermal atmospheric-pressure helium plasma jet on staphylococcus aureus biofilms,” Plasma Process. Polym., vol. 12, no. 8, 2015, doi: 10.1002/ppap.201500006.

      29. J. Zhu et al., “Combined effect of ultrasound, heat, and pressure on Escherichia coli O157:H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vaccinium corymbosum) juice,” Ultrason. Sonochem., vol. 37, pp. 251–259, 2017, doi: 10.1016/j.ultsonch.2017.01.017.

      30. D. Ziuzina, S. Patil, P. J. Cullen, K. M. Keener, and P. Bourke, “Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce,” Food Microbiol., vol. 42, pp. 109–116, 2014, doi: 10.1016/j.fm.2014.02.007.

      31. V. D. Farkade, S. Harrison, and A. B. Pandit, “Heat induced translocation of proteins and enzymes within the cell: An effective way to optimize the microbial cell disruption process,” Biochem. Eng. J., vol. 23, no. 3, 2005, doi: 10.1016/j.bej.2005.01.001.

      32. A. J. Brodowska, A. Nowak, and K. Śmigielski, “Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview,” Crit. Rev. Food Sci. Nutr., vol.


Скачать книгу