Thermal Food Engineering Operations. NITIN KUMAR
Grand, B. Divol, and H. Alexandre, “Characterization of the Viable but Nonculturable (VBNC) State in Saccharomyces cerevisiae.,” PLoS One, vol. 8, no. 10, 2013, doi: 10.1371/jour nal. pone.0077600.
34. I. Albertos et al., “Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets,” Innov. Food Sci. Emerg. Technol., vol. 44, 2017, doi: 10.1016/j.ifset.2017.07.006.
35. H. Daryaei, A. E. Yousef, and V. M. Balasubramaniam, “Microbiological aspects of high-pressure processing of food: inactivation of microbial vegetative cells and spores,” in Food Engineering Series, 2016.
36. J. Raso, I. Alvarez, S. Condón, and F. J. Sala Trepat, “Predicting inactivation of Salmonella senftenberg by pulsed electric fields,” Innov. Food Sci. Emerg. Technol., vol. 1, no. 1, 2000, doi: 10.1016/S1466-8564(99)00005-3.
37. A. Ait-Ouazzou, P. Mañas, S. Condón, R. Pagán, and D. García-Gonzalo, “Role of general stress-response alternative sigma factors σ S (RpoS) and σ B (SigB) in bacterial heat resistance as a function of treatment medium pH,” Int. J. Food Microbiol., vol. 153, no. 3, pp. 358–364, 2012, doi: 10.1016/j. ijfoodmicro.2011.11.027.
38. M. D. Esteban, A. Aznar, P. S. Fernández, and A. Palop, “Combined effect of nisin, carvacrol and a previous thermal treatment on the growth of Salmonella enteritidis and Salmonella senftenberg,” Food Sci. Technol. Int., vol. 19, no. 4, 2013, doi: 10.1177/1082013212455185.
39. C. Hill, P. D. Cotter, R. D. Sleator, and C. G. M. Gahan, “Bacterial stress response in Listeria monocytogenes: Jumping the hurdles imposed by minimal processing,” in International Dairy Journal, 2002, vol. 12, no. 2–3, doi: 10.1016/S0958-6946(01)00125-X.
40. T. Abee and J. A. Wouters, “Microbial stress response in minimal processing,” Int. J. Food Microbiol., vol. 50, no. 1–2, 1999, doi: 10.1016/ S0168-1605(99)00078-1.
41. G. Cebrián, P. Mañas, and S. Condón, “Comparative resistance of bacterial foodborne pathogens to non-thermal technologies for food preservation,” Frontiers in Microbiology, vol. 7, no. MAY. 2016, doi: 10.3389/ fmicb.2016.00734.
42. A. Chen et al., “Plasma membrane behavior, oxidative damage, and defense mechanism in Phanerochaete chrysosporium under cadmium stress,” Process Biochem., vol. 49, no. 4, 2014, doi: 10.1016/j.procbio.2014.01.014.
43. J. Dai, A. Gupte, L. Gates, and R. J. Mumper, “A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: Extraction methods, stability, anticancer properties and mechanisms,” Food Chem. Toxicol., vol. 47, no. 4, 2009, doi: 10.1016/j.fct.2009.01.016.
44. S. Gao, G. D. Lewis, M. Ashokkumar, and Y. Hemar, “Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria,” Ultrason. Sonochem., vol. 21, no. 1, 2014, doi: 10.1016/j.ultsonch.2013.06.006.
45. L. Han, S. Patil, D. Boehm, V. Milosavljević, P. J. Cullen, and P. Bourke, “Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus,” Appl. Environ. Microbiol., vol. 82, no. 2, 2016, doi: 10.1128/AEM.02660-15.
46. A. A. Gabriel, “Inactivation behaviors of foodborne microorganisms in multi-frequency power ultrasound-treated orange juice,” Food Control, vol. 46, 2014, doi: 10.1016/j.foodcont.2014.05.012.
47. V. Trivittayasil, F. Tanaka, and T. Uchino, “Investigation of deactivation of mold conidia by infrared heating in a model-based approach,” J. Food Eng., vol. 104, no. 4, 2011, doi: 10.1016/j.jfoodeng.2011.01.018.
48. E. Eser and H. Ibrahim Ekiz, “Effect of far infrared pre-processing on microbiological, physical and chemical properties of peanuts,” Carpathian J. Food Sci. Technol., vol. 10, no. 1, 2018.
49. S. Wilson, “Development of Infrared Heating Technology for Corn Drying and Decontamination to Maintain Quality and Prevent Mycotoxins,” Theses Diss., 2016, [Online]. Available: https://scholarworks.uark.edu/etd/1542.
50. R. Abdul-Kadir, T. J. Bargman, and J. H. Rupnow, “Effect of Infrared Heat Processing on Rehydration Rate and Cooking of Phaseolus vulgaris (Var. Pinto),” J. Food Sci., vol. 55, no. 5, 1990, doi: 10.1111/j.1365-2621.1990.tb03964.x.
51. N. Staack, L. Ahrné, E. Borch, and D. Knorr, “Effect of infrared heating on quality and microbial decontamination in paprika powder,” J. Food Eng., vol. 86, no. 1, 2008, doi: 10.1016/j.jfoodeng.2007.09.004.
52. L. Eliasson, P. Libander, M. Lövenklev, S. Isaksson, and L. Ahrné, “Infrared Decontamination of Oregano: Effects on Bacillus cereus Spores, Water Activity, Color, and Volatile Compounds,” J. Food Sci., vol. 79, no. 12, 2014, doi: 10.1111/1750-3841.12694.
53. J. W. Ha and D. H. Kang, “Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal action,” Appl. Environ. Microbiol., vol. 81, no. 1, 2015, doi: 10.1128/AEM.01862-14.
54. S. Jun and J. Irudayaraj, “A Dynamic Fungal Inactivation Approach Using Selective Infrared Heating,” Trans. Am. Soc. Agric. Eng., vol. 46, no. 5, 2003, doi: 10.13031/2013.15435.
55. F. G. Chizoba Ekezie, D. W. Sun, Z. Han, and J. H. Cheng, “Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments,” Trends in Food Science and Technology, vol. 67. 2017, doi: 10.1016/j.tifs.2017.05.014.
56. G.-A. Ştefănoiu, E. E. Tănase, A. C. Miteluţ, and M. E. Popa, “Unconventional Treatments of Food: Microwave vs. Radiofrequency,” Agric. Agric. Sci. Procedia, vol. 10, 2016, doi: 10.1016/j.aaspro.2016.09.024.
57. S. Chandrasekaran, S. Ramanathan, and T. Basak, “Microwave food processing-A review,” Food Research International, vol. 52, no. 1. 2013, doi: 10.1016/j.foodres.2013.02.033.
58. P. Lopez-Iturri, S. De Miguel-Bilbao, E. Aguirre, L. Azpilicueta, F. Falcone, and V. Ramos, “Estimation of radiofrequency power leakage from microwave ovens for dosimetric assessment at nonionizing radiation exposure levels,” Biomed Res. Int., vol. 2015, 2015, doi: 10.1155/2015/603260.
59. Q. Guo, D. W. Sun, J. H. Cheng, and Z. Han, “Microwave processing techniques and their recent applications in the food industry,” Trends in Food Science and Technology, vol. 67. 2017, doi: 10.1016/j.tifs.2017.07.007.
60. H. Jiang, M. Zhang, A. S. Mujumdar, and R. X. Lim, “Drying uniformity analysis of pulse-spouted microwave–freeze drying of banana cubes,” Dry. Technol., vol. 34, no. 5, 2016, doi: 10.1080/07373937.2015.1061000.
61. A. Álvarez, J. Fayos-Fernández, J. Monzó-Cabrera, M. J. Cocero, and R. B. Mato, “Measurement and correlation of the dielectric properties of a grape pomace extraction media. Effect of temperature and composition,” J. Food Eng., vol. 197, 2017, doi: 10.1016/j.jfoodeng.2016.11.009.
62. M. Vinatoru, T. J. Mason, and I. Calinescu, “Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials,” TrAC - Trends in Analytical Chemistry, vol. 97. 2017, doi: 10.1016/j.trac.2017.09.002.
63. K. Knoerzer, P. Juliano, and G. Smithers, Innovative Food Processing Technologies: Extraction, Separation, Component Modification and Process Intensification. 2016.
64. G. C. Jeevitha, H. B. Sowbhagya, and H. U. Hebbar, “Application of microwaves for microbial load reduction in black pepper (Piper nigrum L.),” J. Sci. Food Agric., vol. 96, no. 12, 2016, doi: 10.1002/jsfa.7630.
65. M. C. Pina-Pérez, M. Benlloch-Tinoco, D. Rodrigo, and A. Martinez, “Cronobacter sakazakii Inactivation by Microwave