Handbook of Aggregation-Induced Emission, Volume 1. Группа авторов

Handbook of Aggregation-Induced Emission, Volume 1 - Группа авторов


Скачать книгу
of the AIE‐core and pyridine group, having TTPy‐analogue characteristics, while the other two AIEgens are structurally similar to TTVP, considering the inclusion of a functional group with two positive charges. The cell image experiments indicate that the newly designed TTPy‐analogues can translocate through the cell membrane and target mitochondria, while the TTVP analogues can selectively light up the cell membrane. The experimental results verified the theoretical prediction.

Schematic illustration of (a) the QM/MM model of TTVP in lipid membrane. (b, c) Calculated NTOs for TTVP at S1 states in both lipid membrane and dilute THF solution. (d, e) Superposition of optimized structures at both S0 and S1 states for TTVP in both lipid membrane and dilute THF solution. Calculated (f) total reorganization energies and (g) fluorescence emission spectrum of TTVP in both lipid membrane and dilute THF solution.

      Source: Reproduced from Ref. [77]. Copyright 2019 The Royal Society of Chemistry.

      Accurately describing the structure of excited state and decay processes is still a long‐term challenge computationally because the electron–electron correlation and electron–vibration coupling are required to be involved [78]. The anharmonic effect and extremely strong vibronic coupling beyond the Franck–Condon region are not considered in the current theoretical approaches, although it is found that the excitonic coupling has very minor effect on the nonradiative decay rate with only 12–33% enhancement for typical AIEgens [79, 80]. The effect of the intermolecular excitonic coupling should be taken into account, as well as the intermolecular charge transfer and excimer, for more compact molecular packing with short distance or strong ππ stacking. In addition, polarizable force field needs to be involved in the QM/MM protocol to consider the electron‐density change of the QM molecule in the excited state. All these are being actively pursued.

      This work is supported by the National Natural Science Foundation of China (Grants 21973099, 21803007) and Beijing Institute of Technology Research Fund Program for Young Scholars.

      1 1 Briks, J. B. (1970). Photophysics of Aromatic Molecules. Wiley: London.

      2 2 Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. (2015). Aggregation‐induced emission: together we shine, united we soar! Chem. Rev., 115 (21), 11718–11940.

      3 3 Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. (2014). Aggregation‐induced emission: the whole is more brilliant than the parts. Adv. Mater. 26 (31), 5429–5479.

      4 4 Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. (2001). Aggregation‐induced emission of 1‐methyl‐1,2,3,4,5‐pentaphenylsilole. Chem. Commun. (18), 1740–1741.

      5 5 Oelkrug, D.; Tompert, A.; Gierschner, J.; Egelhaaf, H.‐J.; Hanack, M.; Hohloch, M.; Steinhuber, E. (1998). Tuning of fluorescence in films and nanoparticles of oligophenylenevinylenes. J. Phys. Chem. B 102 (11), 1902–1907.

      6 6 Hong, Y.; Lam, J. W. Y.; Tang, B. Z. (2009). Aggregation‐induced emission: phenomenon, mechanism and applications. Chem. Commun. 4332–4353.

      7 7 Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z., (2003). Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1‐substituted 2,3,4,5‐tetraphenylsiloles. Chem. Mater. 15 (7), 1535–1546.

      8 8 Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li, Z.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. (2007). Aggregation‐induced and crystallization‐enhanced emissions of 1,2‐diphenyl‐3,4‐bis(diphenylmethylene)‐1‐cyclobutene. Chem. Commun. 3255–3257.

      9 9 Leung, N. L. C.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J. W. Y.; Tang, B. Z. (2014). Restriction of intramolecular motions: the general mechanism behind aggregation‐induced emission. Chem. Eur. J. 20 (47), 15349–15353.

      10 10 Shuai, Z.; Peng, Q. (2014). Excited states structure and processes: understanding organic light‐emitting diodes at the molecular level. Phys. Rep. 537 (4), 123–156.

      11 11 Peng, Q.; Niu, Y.; Shi, Q.; Gao, X.; Shuai, Z. (2013). Correlation function formalism for triplet excited state decay: combined spin–orbit and nonadiabatic couplings. J. Chem. Theory Comput. 9 (2), 1132–1143.

      12 12 Niu, Y.; Peng, Q.; Deng, C.; Gao, X.; Shuai, Z. (2010). Theory of excited state decays and optical spectra: application to polyatomic molecules. J. Phys. Chem. A 114 (30), 7817–7831.

      13 13 Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. (2007). Toward quantitative prediction of molecular fluorescence quantum efficiency: role of Duschinsky rotation. J. Am. Chem. Soc. 129 (30), 9333–9339.

      14 14 Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. (2007). Excited state radiationless decay process with Duschinsky rotation effect: formalism and implementation. J. Chem. Phys. 126 (11), 114302.

      15 15 Li, Q.; Blancafort, L. (2013). A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene. Chem. Commun. 49 (53), 5966–5968.

      16 16 Crespo‐Otero, R.; Li, Q.; Blancafort, L. (2019). Exploring potential energy surfaces for aggregation‐induced emission—from solution to crystal. Chem. Asian J. 14 (6), 700–714.

      17 17 Liu, Y.; Tao, X.; Wang, F.; Shi, J.; Sun, J.; Yu, W.; Ren, Y.; Zou, D.; Jiang, M. (2007). Intermolecular hydrogen bonds induce highly emissive excimers: enhancement of solid‐state


Скачать книгу