Handbook of Aggregation-Induced Emission, Volume 1. Группа авторов
Karadakov, P. B. (2008). Aromaticity and antiaromaticity in the low‐lying electronic states of cyclooctatetraene. J. Phys. Chem. A 112 (49), 12707–12713.
52 52 Feixas, F.; Vandenbussche, J.; Bultinck, P.; Matito, E.; Solà, M. (2011). Electron delocalization and aromaticity in low‐lying excited states of archetypal organic compounds. Phys. Chem. Chem. Phys. 13 (46), 20690–20703.
53 53 Gogonea, V.; Schleyer, P. v. R.; Schreiner, P. R. (1998). Consequences of triplet aromaticity in 4nπ‐electron annulenes: calculation of magnetic shieldings for open‐shell species. Angew. Chem. Int. Ed. 37 (13‐14), 1945–1948.
54 54 Dong, Y.; Xu, B.; Zhang, J.; Lu, H.; Wen, S.; Chen, F.; He, J.; Li, B.; Ye, L.; Tian, W. (2012). Supramolecular interactions induced fluorescent organic nanowires with high quantum yield based on 9,10‐distyrylanthracene. CrystEngComm 14 (20), 6593–6598.
55 55 Qin, A.; Lam, J. W. Y.; Mahtab, F.; Jim, C. K. W.; Tang, L.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. (2009). Pyrazine luminogens with “free” and “locked” phenyl rings: understanding of restriction of intramolecular rotation as a cause for aggregation‐induced emission. Appl. Phys. Lett. 94 (25), 253308.
56 56 Chen, J.; Xu, B.; Ouyang, X.; Tang, B. Z.; Cao, Y. (2004). Aggregation‐induced emission of cis,cis‐1,2,3,4‐tetraphenylbutadiene from restricted intramolecular rotation. J. Phys. Chem. A 108 (37), 7522–7526.
57 57 Wu, Q.; Zhang, T.; Peng, Q.; Wang, D.; Shuai, Z. (2014). Aggregation induced blue‐shifted emission ‐ the molecular picture from a QM/MM study. Phys. Chem. Chem. Phys. 16 (12), 5545–5552.
58 58 Heller, E. J.; Sundberg, R.; Tannor, D. (1982). Simple aspects of Raman scattering. J. Phys. Chem. 86 (10), 1822–1833.
59 59 Santoro, F.; Cappelli, C.; Barone, V. (2011). Effective time‐independent calculations of vibrational resonance Raman spectra of isolated and solvated molecules including Duschinsky and Herzberg–Teller effects. J. Chem. Theory Comput. 7 (6), 1824–1839.
60 60 Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li, Z.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. (2007). Aggregation‐induced and crystallization‐enhanced emissions of 1,2‐diphenyl‐3,4‐bis(diphenylmethylene)‐1‐cyclobutene. Chem. Commun. ( 31), 3255–3257.
61 61 Zhang, T.; Ma, H.; Niu, Y.; Li, W.; Wang, D.; Peng, Q.; Shuai, Z.; Liang, W. (2015). Spectroscopic signature of the aggregation‐induced emission phenomena caused by restricted nonradiative decay: a theoretical proposal. J. Phys. Chem. C 119 (9), 5040–5047.
62 62 Lin, S. H.; Bersohn, R. (1968). Effect of partial deuteration and temperature on triplet‐state lifetimes. J. Chem. Phys. 48 (6), 2732–2736.
63 63 Saltiel, J.; Waller, A. S.; Sears, D. F.; Garrett, C. Z. (1993). Fluorescence quantum yields of trans‐stilbene‐d0 and ‐d2 in n‐hexane and n‐tetradecane: medium and deuterium isotope effects on decay processes. J. Phys. Chem. 97 (11), 2516–2522.
64 64 Zhang, T.; Peng, Q.; Quan, C.; Nie, H.; Niu, Y.; Xie, Y.; Zhao, Z.; Tang, B. Z.; Shuai, Z. (2016). Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation. Chem. Sci. 7 (8), 5573–5580.
65 65 Chen, J.; Xu, B.; Yang, K.; Cao, Y.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. (2005). Photoluminescence spectral reliance on aggregation order of 1,1‐bis(2′‐thienyl)‐2,3,4,5‐tetraphenylsilole. J. Phys. Chem. B 109 (36), 17086–17093.
66 66 Zhang, X.; Sørensen, J. K.; Fu, X.; Zhen, Y.; Zhao, G.; Jiang, L.; Dong, H.; Liu, J.; Shuai, Z.; Geng, H.; Bjørnholm, T.; Hu, W. (2014). Rubrene analogues with the aggregation‐induced emission enhancement behaviour. J. Mater. Chem. C 2 (5), 884–890.
67 67 Yoshiharu, N.; Chitoshi, K.; Hiroyuki, K.; Takeshi, K. (2011). Diacenaphtho[1,2‐b;1′,2′‐d]silole and ‐pyrrole. Chem. Lett. 40 (12), 1437–1439.
68 68 Katoh, R.; Suzuki, K.; Furube, A.; Kotani, M.; Tokumaru, K. (2009). Fluorescence quantum yield of aromatic hydrocarbon crystals. J. Phys. Chem. C 113 (7), 2961–2965.
69 69 Varghese, S.; Park, S. K.; Casado, S.; Fischer, R. C.; Resel, R.; Milián‐Medina, B.; Wannemacher, R.; Park, S. Y.; Gierschner, J. (2013). Stimulated emission properties of sterically modified distyrylbenzene‐based H‐aggregate single crystals. J. Phys. Chem. Lett. 4 (10), 1597–1602.
70 70 Zheng, X.; Peng, Q.; Zhu, L.; Xie, Y.; Huang, X.; Shuai, Z. (2016). Unraveling the aggregation effect on amorphous phase AIE luminogens: a computational study. Nanoscale 8, 15173–15180.
71 71 Fan, X.; Sun, J.; Wang, F.; Chu, Z.; Wang, P.; Dong, Y.; Hu, R.; Tang, B. Z.; Zou, D. (2008). Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state. Chem. Commun. (26), 2989–2991.
72 72 Gu, Y.; Wang, K.; Dai, Y.; Xiao, G.; Ma, Y.; Qiao, Y.; Zou, B. (2017). Pressure‐induced emission enhancement of carbazole: the restriction of intramolecular vibration. J. Phys. Chem. Lett. 8 (17), 4191–4196.
73 73 Yuan, H.; Wang, K.; Yang, K.; Liu, B.; Zou, B. (2014). Luminescence properties of compressed tetraphenylethene: the role of intermolecular interactions. J. Phys. Chem. Lett. 5 (17), 2968–2973.
74 74 Zhang, T.; Shi, W.; Wang, D.; Zhuo, S.; Peng, Q.; Shuai, Z. (2018). Pressure‐induced emission enhancement in hexaphenylsilole: a computational study. J. Mater. Chem. C 7, 1388–1398.
75 75 Wang, D.; Su, H.; Kwok, R. T. K.; Hu, X.; Zou, H.; Luo, Q.; Lee, M. S.; Xu, W.; Lam, J. W. Y.; Tang, B. Z. (2018). Rational design of a water‐soluble NIR AIEgen, and its application in ultrafast wash‐free cellular imaging and photodynamic cancer cell ablation. Chem. Sci. 9, 3685–3693.
76 76 Wang, D.; Lee, M. M. S.; Shan, G.; Kwok, R. T. K.; Lam, J. W. Y.; Su, H.; Cai, Y.; Tang, B. Z. (2018). Highly efficient photosensitizers with far‐red/near‐infrared aggregation‐induced emission for in vitro and in vivo cancer theranostics. Adv. Mater. 30, 1802105.
77 77 Zheng, X.; Wang, D.; Xu, W.; Cao, S.; Peng, Q.; Tang, B. Z. (2019). Charge control of fluorescent probes to selectively target the cell membrane or mitochondria: theoretical prediction and experimental validation. Mater. Horiz. 6, 2016–2023.
78 78 Shuai, Z.; Xu, W.; Peng, Q.; Geng, H. (2013). From electronic excited state theory to the property predictions of organic optoelectronic materials. Sci. China Chem. 56 (9), 1277–1284.
79 79 Li, W.; Zhu, L.; Shi, Q.; Ren, J.; Peng, Q.; Shuai, Z. (2017). Excitonic coupling effect on the nonradiative decay rate in molecular aggregates: formalism and application. Chem. Phys. Lett. 683, 507–514.
80 80 Li, W.; Peng, Q.; Xie, Y.; Zhang, T.; Shuai, Z. (2016). Effect of intermolecular excited‐state interaction on vibrationally resolved optical spectra in organic molecular aggregates. Acta Chim. Sinica 74 (11), 902–909.
3 Aggregation‐induced Emission from the Restriction of Double Bond Rotation at the Excited State
Ming Hu and Yan-Song Zheng
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
3.1 Introduction
In the whole history of human being, mankind is being dependent on light, from natural sunlight, flame light, incandescent lamp, to light‐emitting diode (LED). While light has become an integral part of human civilization, it is far away from fully understanding the light. Luminescence, a class of light emitted by luminophoric molecules and called as “cold” light unlike sunlight and torch light, not only can light up macroscopic space but can also help us to see the microscopic species such as cell and protein. Therefore, luminescence is a cutting‐edge research field in chemistry, materials, and biology. Countless chemists are committed to the design and preparation of new luminescence materials and their applicational development and