Nitric Oxide in Plants. Группа авторов
97: 1–10. doi:10.1016/j.envexpbot.2013.09.010.
52 Foissner, I., Wendehenne, D., Langebartels, C. et al. (2000). In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant Journal 23: 817–824.
53 Fröhlich, A. and Durner, J. (2011). The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Science 181: 401–404.
54 Gadelha, C.G., de Souza Miranda, R., Alencar, N.L.M. et al. (2017). Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. Journal of Plant Physiology 212: 69–79. doi:10.1016/j.jplph.2017.02.005.
55 Garcia, M.C., Gay, R., Sokolovski, S. et al. (2003). Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proceedings of the National Academy of Sciences of the United States of America 100: 11116–111121.
56 Garcia-Mata, C. and Lamattina, L. (2001). Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology 126: 1196–1204.
57 Garcia-Mata, C. and Lamattina, L. (2002). Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiology 128: 790–792.
58 Garcia-Mata, C. and Lamattina, L. (2013). Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. Plant Science 201–202: 66–73. doi:10.1016/j.plantsci.2012.11.007.
59 Garcia-Olmedo, F., Rodrigguez-Palenzulea, P., Molina, A. et al. (2001). Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Letters 489: 219–222.
60 Giba, Z., Grubisic, D., and Konjevic, R. (2007). Seeking the role of NO in breaking seed dormancy. In: Nitric Oxide in Plant Growth, Development and Stress Physiology (eds. L. Lamattina and J. Polacco), 91–111. Berlin, Heidelberg, Germany: Springer.
61 Gouvea, C.M.C.P., Souza, J.F., and Magalhaes, M.I.S. (1997). NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regulation 21: 183–187.
62 Greco, M., Chiappetta, A., Bruno, L. et al. (2012). In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. Journal of Experimental Botany 63: 695–709. doi:10.1093/jxb/err313.
63 Grubisic, D., Giba, Z., and Konjevic, R. (1992). The effect of organic nitrates in phytochrome controlled germination of Paulownia tomentosa seeds. Photochemistry and Photobiology 56: 629–632.
64 Gupta, K.J., Igamberdiev, A.U., Manjunatha, G. et al. (2011). The emerging roles of nitric oxide (NO) in plant mitochondria. Plant Science 181: 520–526.
65 Gupta, K.J. and Kaiser, W.M. (2010). Production and scavenging of nitric oxide by barley root mitochondria. Plant and Cell Physiology 51: 576–584.
66 Hasanuzzaman, M., Nahar, K., Alam, M.M. et al. (2018). Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant Physiology and Biochemistry 126: 173–186.
67 Hatsugai, N., Kuroyanagi, M., Yamada, K. et al. (2004). A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305: 855–858.
68 Hayat, S., Yadav, S., Ali, B. et al. (2010). Interactive effect of nitric oxide and brassinosteroids on photosynthesis and the antioxidant system of Lycopersicon esculentum. Russian Journal of Plant Physiology 57: 212–221.
69 He, H.Y., He, L.F., Gu, M.H. et al. (2012). Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant Science 183: 123–130.
70 Hebelstrup, K., Shah, J., and Igamberdiev, A. (2013). The role of nitric oxide and hemoglobin in plant development and morphogenesis. Physiologia Plantarum 148: 457–469. doi:10.1111/ppl.12062.
71 Hichri, I., Boscari, A., Castella, C. et al. (2015). Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. Journal of Experimental Botany 66: 2877–2887. doi:10.1093/jxb/erv051.
72 Huang, X., Stettmaier, K., Michel, C. et al. (2004). Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218: 938–946.
73 Hung, K.T. and Kao, C.H. (2003). Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. Journal of Plant Physiology 160: 871–879.
74 Jovanovic, V., Giba, Z., Djokovic, D. et al. (2005). Gibberellic acid nitrite stimulates germination of two species of light-requiring seeds via the nitric oxide pathway. Annals of the New York Academy of Sciences 1048: 476–481.
75 Kaur, H. and Bhatla, S.C. (2016). Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide 59: 42–53. doi:10.1016/j.niox.2016.07.001.
76 Khairy, A.I.H., Oh, M.J., Lee, S.M. et al. (2016). Nitric oxide overcomes Cd and Cu toxicity in vitro-grown tobacco plants through increasing contents and activities of rubisco and rubisco activase. Biochimie Open 2: 41e51.
77 Khator, K., Saxena, I., and Shekhawat, G.S. (2021). Nitric oxide induced Cd tolerance and phytoremediation potential of B. juncea by the modulation of antioxidant defense system and ROS detoxification. BioMetals 34: 15–32. doi:10.1007/s10534-020-00259-9.
78 Klepper, L.A. (1979). Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmospheric Environment 13: 537–542.
79 Kohli, S.K. et al. (2019). A current scenario on role of brassinosteroids in plant defense triggered in response to biotic challenges. In: Brassinosteroids: Plant Growth and Development (eds. S. Hayat, M. Yusuf, R. Bhardwaj, and A. Bajguz). Singapore: Springer. doi:10.1007/978-981-13-6058-9_13.
80 Kopyra, M. and Gwóźdź, E.A. (2003). Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiology and Biochemistry 41: 1011–1017.
81 Kovacs, I., Durner, J., and Lindermayr, C. (2015). Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. The New Phytologist 208: 860–872. doi:10.1111/nph.13502.
82 Kushwaha, B.K., Singh, S., Tripathi, D.K. et al. (2019). New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. Journal of Hazardous Materials 361: 134–140.
83 Lamattina, L., García-Mata, C., Graziano, M. et al. (2003). Nitric oxide: the versatility of an extensive signal molecule. Annual Review of Plant Biology 54: 109–136.
84 Lau, S.-E., Hamdan, M.F., Pua, T.-L. et al. (2021). Plant nitric oxide signaling under drought stress. Plants 10 (2): 360. doi:10.3390/plants10020360.
85 Lee, H.Y., Byeon, Y., Tan, D.X. et al. (2015). Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. Journal of Pineal Research 58: 291–299.
86 Lee, K., Choi, G.H., and Back, K. (2017). Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide: key regulatory roles for tryptophan decarboxylase