Catalytic Asymmetric Synthesis. Группа авторов
target="_blank" rel="nofollow" href="#ulink_90915ae2-3498-5393-a16a-5ea292c59411">Scheme 2.92. Cooperative catalysis with CPA and Pd(II) complex (a) (
Source: Based on [183]
), and its mechanism (b).
Hu reported a reaction between diazoacetamides and various imines using Rh2(OAc)4 and CPA 6i to furnish chiral oxindole derivatives. The zwitterionic intermediate was trapped by imines (Scheme 2.93) [184].
Scheme 2.93. Cooperative catalysis with CPA and Rh2(OAc)4.
Source: Based on [184].
2.13. COMBINATION WITH PHOTOREDOX CATALYST
The merger of chiral Brønsted acid and photoredox catalyst was first reported by Knowles in 2013. The reductive coupling of ketones and hydrazones proceeded in a highly enantioselective manner to furnish syn‐1,2‐amino alcohols with excellent levels of diastereo‐ and enantioselectivities. The reaction was proposed to proceed via N‐centered radicals formed by the proton‐coupled electron transfer (PCET) activation of sulfonamide N‐H bonds [185]. A range of enantioselective reactions taking advantage of the combination of photoredox catalysis and chiral Brønsted acid catalysis has been reported [186]. For details, please see Chapter 8 [187].
2.14. CONCLUSION
In summary, development of chiral Brønsted acid catalysis up to 2020 has been discussed in this chapter. Significant advances in this area have emerged in the past decade, and numerous numbers of papers were published. Transformation mediated by chiral Brønsted acid started from the reaction with imines because of the basic nature of imine nitrogen. Functional groups activated by chiral Brønsted acids have been expanded to carbonyl, alkyne, alkene, alcohol, and others. A wide range of asymmetric reactions was catalyzed by the chiral Brønsted acid with high to excellent enantioselectivities. Furthermore, combination with other catalysts such as metal‐based catalysts and photoredox catalysts was successfully achieved. Relay catalysis and cooperative catalysis led to formation of complex molecules with high to excellent optical purity in simple operations. Its application to industrial process will be also expected. I hope this chapter will be useful to synthetic organic chemists who are interested in this active area, and will contribute to further advances.
ACKNOWLEDGMENTS
Generous support from JSPS KAKENHI Grant numbers JP20H00380 and JP20H04826 (Hybrid Catalysis) is acknowledged.
REFERENCES
1 1. Yamamoto, H.; Ishihara, K. eds Acid Catalysis in Modern Organic Synthesis, Vol. 1, and 2, Weinheim, Germany: Wiley‐VCH. 2008.
2 2. (a) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289–296. (b) Pihko, P. M. Angew. Chem. Int. Ed. 2004, 43, 2062–2064.
3 3. (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901–4902. (b) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2000, 39, 1279–1281.
4 4. (a) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964–12965. (b) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672–12673. (c) Inokuma, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2006, 128, 9413–9419; (d) For reviews, see: Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299–4306. (e) Taylor, M. S.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2006, 45, 1520–1543. (f) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713–5743. (g) Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187–1198. (h) Knowles, R. R.; Jacobsen, E. N. Proc. Natl. Acad. Sci. USA 2010, 107, 20678–20685. (i) Takemoto, Y. Chem. Pharm. Bull. 2010, 58, 593–601.
5 5. Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, 424, 146.
6 6. McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 125, 12094–12095.
7 7. (a) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418–3419. (b) Singh, A.; Yoder, R. A.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2007, 129, 3466–3467. (c) For a recent example, see: Yousefi, R.; Struble, T. J.; Payne, J. L.; Vishe, M.; Schley, N. D.; Johnston, J. N. J. Am. Chem. Soc. 2019, 141, 618–625.
8 8. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566–1568.
9 9. Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356–5357.
10 10. (a) Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2007, 129, 10054–10055. (b) Hashimoto, T.; Maruoka, K. Synthesis 2008, 3703–3706.
11 11. (a) Hatano, M.; Maki, T.; Moriyama, K.; Arinobe, M.; Ishihara, K. J. Am. Chem. Soc. 2008, 130, 16858–16860. (b) For reviews, see: Hatano, M.; Ishihara, K. Asian J. Org. Chem. 2014, 3, 352–365. (c) Hatano, M.; Zhao, X.; Mochizuki, T.; Maeda, K.; Motokura, K.; Ishihara, K. Asian J. Org. Chem. 2021, 10, 360–365
12 12. (a) García‐García, P.; Lay, F.; García‐García, P.; Rabalakos, C.; List, B. Angew. Chem. Int. Ed. 2009, 48, 4363–4366. (b) Ratjen, L.; García‐García, P.; Lay, F.; Beck, M. E.; List, B. Angew. Chem. Int. Ed. 2011, 50, 754–758. (c) For a review, see: James, T.; van Gemmeren, M.; List, B. Chem. Rev. 2016, 115, 9388–9409.
13 13. Čorić, I.; List, B. Nature 2012, 483, 315–319.
14 14. DSI, IDP, and IDPi are mainly used as precatalyst to generate silylium cation as well as chiral Brønsted acid. For a review on imidodiphosphorimidate (IDPi) catalysis, see: Schreyer, L.; Properzi, R.; List, B. Angew. Chem. Int. Ed. 2019, 58, 12761–12777.
15 15. (a) For reviews on chiral Brønsted acid catalysis, Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999–1010. (b) Akiyama, T. Chem. Rev. 2007, 107, 5744–5758. (c) Terada, M. Synthesis 2010, 1929–1982. (d) Terada, M. Bull. Chem. Soc. Jpn. 2010, 83, 101–119. (e) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047–9153. (f) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277–9306. (g) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2017, 117, 10608–10620. (h) Maji, R.; Mallojjalaa, S. C.; Wheeler, S. E. Chem. Soc. Rev. 2018, 47, 1142–1158. (i) Merad, J.; Lalli, C.; Bernadat, G.; Maury, J.; Masson, G. Chem. Eur. J. 2018, 24, 3925–2943. (j) Li, X.; Song, Q. Chin. Chem. Lett. 2018, 29, 1181–1192. (k) Xia, Z.‐L.; Xu‐Xu, Q.‐F.; Zheng, C.; You, S.‐L. Chem. Soc. Rev. 2020, 49, 286–300.
16 16. (a) Maruoka, K. ed. Asymmetric Organocatalysis 2, Brønsted base and acid catalysts, and additional topics. In: Science of Synthesis, Stuttgart, Germany, Georg Thieme Verlag KG, 2012. (b).Rueping, M., Parmar, D., and Sugiono, E. eds Asymmetric Brønsted Acid Catalysis, Weinheim, Germany: Wiley‐VCH. 2016.
17 17. (a) Yang, C.; Xue, X.‐S.; Jin, J.‐L.; Li, X.; Cheng, J.‐P. J. Org. Chem. 2013, 48, 7076–7085. (b) Yang, C.; Xue, X.‐S.; Li, X.; Cheng, J.‐P. J. Org. Chem. 2014, 79, 4340–4351.
18 18. Guo, Q.‐X.; Liu, H.; Guo, C.; Luo, S.‐W.; Gu, Y.; Gong, L.‐Z. J. Am. Chem. Soc. 2007, 129, 3790–3791.
19 19. For a review on SPINOL derived chiral phosphoric acid, see: Rahman, A.; Lin, X. Org. Biomol. Chem. 2018, 16, 4753–4777.
20 20. Coric, I.; Müller, S.; List, B. J. Am. Chem. Soc. 2010, 132, 17370–17373.
21 21. Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626–9627.
22 22. (a) Christ, P.; Lindsay, A. G.; Vormittag, S. S.; Neudörfl, J.‐M.; Berkessel, A.; O'Donoghue, A. C. Chem. Eur. J. 2011, 17,