Глоссариум по искусственному интеллекту: 2500 терминов. Александр Юрьевич Чесалов

Глоссариум по искусственному интеллекту: 2500 терминов - Александр Юрьевич Чесалов


Скачать книгу
как фильтр, который преобразовывает пакеты по определенным правилам. Набор команд вычислителя может быть ограничен, что гарантирует простую внутреннюю структуру и достаточно большую скорость работы199.

      Вычислительные модули (Computing modules) – это подключаемые специализированные вычислители, предназначенные для решения узконаправленных задач, таких, как ускорение работы алгоритмов искусственных нейронных сетей, компьютерное зрение, распознавание по голосу, машинное обучение и другие методы искусственного интеллекта, построены на базе нейронного процессора – специализированного класса микропроцессоров и сопроцессоров (процессор, память, передача данных).

      Вычислительный интеллект (Computational intelligence) – это ответвление искусственного интеллекта. Как альтернатива классическому искусственному интеллекту, основанному на строгом логическом выводе, он опирается на эвристические алгоритмы, используемые, например, в нечёткой логике, искусственных нейронных сетях и эволюционном моделировании.

      Вычислительный юмор (Computational humor) – это раздел компьютерной лингвистики и искусственного интеллекта, использующий компьютеры для исследования юмора200.

      Выявление аномалий (также обнаружение выбросов) (Anomaly detection) – это опознавание во время интеллектуального анализа данных редких данных, событий или наблюдений, которые вызывают подозрения ввиду существенного отличия от большей части данных. Обычно аномальные данные характеризуют некоторый вид проблемы, такой как мошенничество в банке, структурный дефект, медицинские проблемы или ошибки в тексте. Аномалии также упоминаются как выбросы, необычности, шум, отклонения или исключения201,202.

      «Г»

      Генеративно-состязательная сеть (Generative Adversarial Network) – это алгоритм машинного обучения без учителя, построенный на комбинации из двух нейронных сетей, одна из которых (сеть G) генерирует образцы, а другая (сеть D) старается отличить правильные («подлинные») образцы от неправильных. Так как сети G и D имеют противоположные цели – создать образцы и отбраковать образцы – между ними возникает антагонистическая игра. Генеративно-состязательную сеть описал Ян Гудфеллоу из компании Google в 2014 году. Использование этой техники позволяет, в частности, генерировать фотографии, которые человеческим глазом воспринимаются как натуральные изображения. Например, известна попытка синтезировать фотографии кошек, которые вводят в заблуждение эксперта, считающего их естественными фото. Кроме того, GAN может использоваться для улучшения качества нечётких или частично испорченных фотографий203.

      Генеративные модели (Generative model) – это семейство архитектур ИИ, целью которых является создание образцов данных с нуля. Они достигают этого, фиксируя распределение данных того типа вещей, которые мы хотим генерировать. На практике модель может создать (сгенерировать) новые примеры из обучающего набора данных. Например, генеративная модель может создавать стихи после обучения на наборе данных сборника ПушкинаСкачать книгу


<p>199</p>

Вычислительные блоки [Электронный ресурс] https://www.osp.ru URL: https://www.osp.ru/os/1997/06/179341 (дата обращения: 28.03.2023)

<p>200</p>

Computational humor [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Computational_humor (дата обращения: 28.03.2023)

<p>201</p>

Anomaly detection [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#anomaly-detection (дата обращения: 28.03.2023)

<p>202</p>

Выявление аномалий [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Выявление_аномалий (дата обращения: 28.03.2023)

<p>203</p>

Generative Adversarial Network (GAN) [Электронный ресурс] https://machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/generative-models-and-gans-fe7efc20020b/ (дата обращения: 11.02.2022)